SPECTRA OF MEASURES AS L_p MULTIPLIERS

ENJI SATO

(Received April 20, 1984)

1. Preliminaries. Let G be a nondiscrete locally compact abelian group with the dual Γ , M(G) the convolution measure algebra of finite regular Borel measures on G. For $\mu \in M(G)$, let $\|\mu\|$ denote the total variation norm, $\mu^1 = \mu$, $\mu^j = \mu^{j-1} * \mu$ $(j=2,3,\cdots)$, where * denotes the convolution, $\hat{\mu}$ the Fourier-Stieltjes transform of, μ , and $\|\hat{\mu}\|_{\infty} = \sup\{|\hat{\mu}(\gamma)|; \gamma \in \Gamma\}$. We call μ a Hermitian measure if $\hat{\mu}(\gamma)$ is real valued on Γ . For $1 \leq p \leq \infty$, let $L_p(G)$ be the L_p space with respect to the Haar measure of G, $\|\cdot\|_p$ the norm of $L_p(G)$. A bounded linear operator T on $L_p(G)$ is called an L_p multiplier if there exists $\hat{T} \in L_{\infty}(\Gamma)$ such that $T(f)^{\hat{}} = \hat{T}\hat{f}$ for every $f \in L_p(G) \cap L_1(G)$. The set of all L_p multipliers will be written as $M_p(G)$ and the norm of $T \in M_p(G)$ is defined by

$$||T||_{M_n(G)} = ||T||_{M_n} = \sup\{||Tf||_{L_n(G)}; ||f||_{L_n(G)} = 1\}.$$

Then $M_p(G)$ is a commutative Banach algebra with unit δ_0 as the convolution operator, where δ_0 is the Dirac measure with unit mass at $0 \in G$. Also for $T \in M_p(G)$, let \widetilde{T} be the Gelfand transform

Now it is known that any measure $\mu \in M(G)$ is contained in $M_p(G)$ as a convolution operator, and $M_1(G)$ is isomorphic to M(G), $M_2(G)$ to $L_{\infty}(\Gamma)$, $M_p(G)$ to $M_q(G)$ if 1/p + 1/q = 1 $(1 , and <math>M_1(G) \subseteq M_p(G) \subseteq M_2(G)$ $(1 \le p \le 2)$ (cf. [6]). For $T \in M_p(G)$, let $\operatorname{sp}(T, M_p)$ be the spectrum of T in $M_p(G)$, i.e., $\operatorname{sp}(T, M_p) = \{\lambda \in C; \lambda \delta_0 - T \text{ is not invertible in } M_p(G)\}$, where C is the complex plane. Then for $\mu \in M(G)$, we have $\operatorname{closure}(\widehat{\mu}(\Gamma)) = \operatorname{sp}(\mu, M_2) \subseteq \operatorname{sp}(\mu, M_p) \subseteq \operatorname{sp}(\mu, M(G))$ $(1 \le p \le 2)$, where $\operatorname{closure}(\widehat{\mu}(\Gamma))$ is the closure of $\widehat{\mu}(\Gamma)$ in the complex plane. Before stating our theorems, we make some preliminary comments. For $f \in L_1(G)$, it is well known and easy to show that $\operatorname{sp}(T_f, M_p(G)) = \widehat{f}(\Gamma) \cup \{0\}$ for $1 \le p \le \infty$ if $T_f(g) = f * g$ for all $g \in L_p(G)$. However, since G is nondiscrete, the classical

Partly supported by the grant-in-Aid for Encouragement of Young Scientists, the Ministry of Education, Science and Culture, Japan.