STIEFEL-WHITNEY HOMOLOGY CLASSES OF *k*-POINCARÉ-EULER SPACES

Dedicated to Professor Itiro Tamura on his sixtieth birthday

AKINORI MATSUI

(Received October 13, 1983)

1. Introduction and the statement of results. Let X be a polyhedron. It is said to be totally *n*-dimensional if there exists a locally finite triangulation K of X such that for each $\sigma \in K$, an *n*-dimensional simplex τ exists in K satisfying $\sigma \prec \tau$ or $\sigma = \tau$. (See Akin [1].) A totally *n*-dimensional polyhedron X is an *n*-dimensional k-Euler space if there exist a locally finite triangulation K of X and a subcomplex L of K satisfying the following:

(1) |L| is a totally (n-1)-dimensional polyhedron or empty.

(2) The cardinality of $\{\tau \in K | \sigma \prec \tau\}$ is even for every σ in K - L, whenever dim $\sigma \ge n - k$.

(3) The cardinality of $\{\tau \in K | \sigma \prec \tau\}$ is odd for every σ in L, whenever dim $\sigma \ge n - k$.

(4) The cardinality of $\{\tau \in L \mid \sigma \prec \tau\}$ is even for every σ in L, whenever dim $\sigma \ge n - k - 1$.

We usually denote ∂X instead of |L|. If X is an n-dimensional k-Euler space, then ∂X clearly is an (n-1)-dimensional k-Euler space. An n-dimensional k-Euler space X is closed if X is compact and ∂X is empty. If $k \ge n$, we said n-dimensional k-Euler spaces to be n-dimensional \mathbb{Z}_2 -Euler spaces. (See [10].)

Let X be an n-dimensional k-Euler space with a triangulation K. Then the *i*-th Stiefel-Whitney homology class $s_i(X)$ in $H_i^{inf}(X, \partial X; \mathbb{Z}_2)$ is the homology class determined as the *i*-skeleton \overline{K}^i of the first barycentric subdivision \overline{K} of K for $n - k < i \leq n$. Here H_*^{inf} is the homology theory of infinite chains. The Stiefel-Whitney homology classes of k-Euler spaces are well defined by Proposition 2.2.

Since an *n*-dimensional differentiable manifold M has a triangulation, the *i*-th Stiefel-Whitney homology class $s_i(M)$ can be defined as above for $0 \leq i \leq n$. Whitney [16] announced that the *i*-th Stiefel-Whitney homology class of an *n*-dimensional differentiable manifold M is the Poincaré dual of the (n - i)-th Stiefel-Whitney class $w^{n-i}(M)$. Its proof was outlined