ASYMPTOTIC ESTIMATES FOR MODULI OF EXTREMAL RINGS

GLEN D. ANDERSON AND MAVINA K. VAMANAMURTHY

(Received November 12, 1984)

Abstract. For $n \ge 2$ and 0 < a < 1 let $R_n(a)$ denote the extremal ring domain consisting of the unit ball in *n*-space minus the closed slit [-a, a] along the x_1 -axis. Significant lower and upper limits as *n* tends to ∞ are obtained for the expressions

$$\mod R_n(a) - n + \frac{1}{2} \log n$$

and

$$n^{1/2-n} \mod R_n(a)^n$$

where mod denotes the conformal modulus.

1. Introduction. In this paper we find asymptotic lower and upper limits as n tends to ∞ for the modulus of certain extremal rings in n-space.

For $n \ge 2$ and 0 < a < 1 we let $R = R_n(a)$ denote the ring in \mathbb{R}^n consisting of the open unit ball B^n minus the closed slit [-a, a] along the x_1 -axis. The conformal capacity of R is defined to be

$$ext{cap} R = \inf_u \int_R |
abla u|^n d oldsymbol{\omega}$$

where $u \in C^{1}(R)$, u = 0 on the slit [-a, a], and u = 1 on the boundary sphere S^{n-1} . The *modulus* of R is defined by

$$\mathrm{mod}\ R = (\sigma_{n-1}/\mathrm{cap}\ R)^{_{1/(n-1)}}$$
 , $\sigma_{n-1} = m_{n-1}(S^{n-1})$.

The rings $R_n(a)$ are *extremal* in the following sense: If R is any ring in \mathbb{R}^n consisting of the unit ball minus a continuum whose diameter is at least 2*a*, then mod $R \leq \mod R_n(a)$ (cf. [An1]). This extremal property of the rings $R_n(a)$ makes them useful in the study of the distortion properties of quasiconformal mappings in *n*-space (cf. [G], [AVV]), and we therefore wish to obtain all possible information about these rings.

The asymptotic behavior of $R_n(a)$ has been studied as a tends to 0 and to 1 and as n tends to ∞ . In particular, it has been shown [An2, Theorem 2, p. 7] that for each a, 0 < a < 1,

AMS (MOS) subject classification (1980). Primary 30C60.