INJECTIVE ENVELOPES OF C*-DYNAMICAL SYSTEMS*

MASAMICHI HAMANA

(Received September 10, 1984)

Abstract. The injective envelope I(A) of a C^* -algebra A is a unique minimal injective C^* -algebra containing A. As a dynamical system version of the injective envelope of a C^* -algebra we show that for a C^* -dynamical system (A, G, α) with G discrete there is a unique maximal C^* -dynamical system (B, G, β) "containing" (A, G, α) so that $A \times_{\alpha r} G \subset B \times_{\beta r} G \subset I(A \times_{\alpha r} G)$, where $A \times_{\alpha r} G$ is the reduced C^* -crossed product of A by G. As applications we investigate the relationship between the original action α on A and its unique extension $I(\alpha)$ to I(A). In particular, a *-automorphism α of A is quasi-inner in the sense of Kishimoto if and only if $I(\alpha)$ is inner.

1. Introduction. In [10], [12], [13] the author introduced the notion of the injective envelope I(A) (resp. regular monotone completion \overline{A}) of a (not necessarily unital) C^{*}-algebra A. (Note that a few authors call this \overline{A} the regular completion of A and use the confusing notation \hat{A} instead of \bar{A} . But \hat{A} was originally used by Wright [33] to denote the regular σ -completion of A, which is properly contained in \overline{A} in general.) The algebra I(A)is a unique minimal injective C^* -algebra containing A^1 as a C^* -subalgebra with the same unit, where A^1 denotes the C^{*}-algebra obtained by adjoining a unit to A if A is non-unital and $A \neq \{0\}$, and denotes A itself otherwise. On the other hand, \overline{A} is a unique monotone complete C^* -algebra such that \overline{A} is the monotone closure of A and each $x \in \overline{A}_{sa}$ (the self-adjoint part of \overline{A}) is the supremum in \overline{A}_{sa} of the set $\{a \in A_{sa}^1: a \leq x\}$, where a C*-algebra B is called monotone complete if each bounded increasing net in B_{sa} has a supremum in B_{sa} , and the monotone closure of a C^{*}-subalgebra C of B is the smallest C^* -subalgebra of B containing C which is closed under the formation of suprema in B_{sa} of bounded increasing nets. Moreover, \overline{A} is realized as the monotone closure of A in I(A) and we have canonically $A \subset \overline{A} \subset I(A)$.

The algebra I(A) or \overline{A} , being monotone complete AW^* , is more tractable than the original C^* -algebra A and is small enough to inherit some properties of A. For example, I(A) or \overline{A} is an AW^* -factor if and only if A is prime [12, 7.1, 6.3], and if A is unital and simple, then any

^{*} This work was announced in the US-Japan Seminar on Geometric Methods in Operator Algebras held at the Research Institute for Mathematical Sciences, Kyoto University on July 12, 1983.