STABILITY PROPERTIES OF SOLUTIONS OF LINEAR VOLTERRA INTEGRODIFFERENTIAL EQUATIONS

WANG ZHICHENG, LI ZHIXIANG AND WU JIANHONG

(Received August 2, 1984)

Consider the following systems of Volterra equations

(1)
$$
Z'(t) = A(t)Z(t) + \int_0^t C(t,s)Z(s)ds,
$$

(2)
$$
y'(t) = A(t)y(t) + \int_0^t C(t, s)y(s)ds + f(t),
$$

(3)
$$
x'(t) = A(t)x(t) + \int_{-\infty}^{t} C(t, s)x(s)ds + f(t),
$$

where A is an $n \times n$ matrix of functions continuous on $(-\infty, +\infty)$, C is an $n \times n$ matrix of functions continuous for $-\infty < s \le t < \infty$, and $f: (-\infty, +\infty) \to \mathbb{R}^n$ is continuous. For the fundamental properties of solutions of these equations, we refer to Driver [4] and Burton [2], Some of those properties may be listed as follows:

(a) There is an $n \times n$ matrix $Z(t)$ satisfying (1) on $[0, \infty)$ and $Z(0) = I$. For each $z_0 \in R^n$, there is a unique solution $z(t, 0, z_0)$ of (1) on $[0, \infty)$ and $z(t, 0, z_0) = Z(t)z_0$.

(b) For (2), given $t_0 \ge 0$ and a continuous function $\varphi: [0, t_0] \to R^n$, there is a unique solution $y(t, t_0, \varphi)$ satisfying (2) on $[t_0, \infty)$ with $y(t, t_0, \varphi) = \varphi(t) \text{ for } t \in [0, t_0].$

J—∞ (c) For (3) we suppose that $\int_{-\infty}^{\infty} |C(t, s)| ds$ is continuous for $0 \le t < \infty$.
 $\in R$ and if $\varphi: (-\infty, t_0] \to R^n$ is a bounded continuous function, there If $v_0 \in \mathbb{R}$ and if φ , (v_0, v_0) is a bounded continuous function, there is a unique solution $x(t, v_0, \varphi)$ satisfying (3) on $[v_0, \infty)$ with $x(t, v_0, \varphi) =$
 $\varphi(t)$ for $t < t$ $\begin{array}{rcl} \mathcal{F}(v) & \mathbf{1} \cup v \equiv v_0. \end{array}$

(a) There is a unique $n \times n$ matrix $R(v, \theta)$ satisfying

(4)
$$
\frac{\partial}{\partial s}R(t, s) = -R(t, s)A(s) - \int_s^t R(t, u)C(u, s)du, \qquad R(t, t) = I
$$

for $0 \leq s \leq t < \infty$. For each $y_{\scriptscriptstyle 0} \in R^n$, the unique solution $y(t, 0, y_{\scriptscriptstyle 0})$ of (2) satisfies

(5)
$$
y(t, 0, y_0) = Z(t)y_0 + \int_0^t R(t, s)f(s)ds,
$$