AFFINE TORUS EMBEDDINGS WHICH ARE COMPLETE INTERSECTIONS

Dedicated to the memory of Professor Takehiko Miyata

HARUHISA NAKAJIMA*

(Received January 14, 1985)

1. Introduction. Throughout this paper, let k be a field, M a free Z-module of finite rank $r \ge 1$ and N the dual $\operatorname{Hom}(M, Z)$ with the canonical pairing $\langle , \rangle \colon M \times N \to Z$. We extend this pairing R-linearly to $M_R \times N_R$ where $M_R = R \otimes_Z M$ and $N_R = R \otimes_Z N$. Let σ be a strongly convex rational polyhedral cone in N_R , i.e., $\sigma = \{\sum_{i=1}^{s} a_i n_i | \text{ any non-negative } a_i \in R\}$ for some $n_i \in N$ $(1 \le i \le s)$ with $\sigma \cap (-\sigma) = \{0\}$. The dual cone $\sigma^{\vee} = \{x \in M_R | \langle x, y \rangle \ge 0 \text{ for all } y \in \sigma\}$ is rational and spans M_R as an R-vector space. The group algebra k[M] of M over k, whose spectrum T_N is ragarded as a k-split torus, contains the monoid algebra $k[M \cap \sigma^{\vee}]$ of $M \cap \sigma^{\vee}$ over k as a k-subalgebra. Then Spec $k[M \cap \sigma^{\vee}]$, which is denoted by X_{σ} , is exactly a normal affine equivariant embedding of the torus T_N . Moreover, every normal equivariant embedding of T_N is covered by such X_{σ} 's (e.g., [4, Chap. I]). Consequently some properties on toric singularities should be characterized in terms of convex rational polyhedral cones.

Let us recall the well known hierarchy "regular" \Rightarrow "local complete intersection" \Rightarrow "Gorenstein" \Rightarrow "Cohen-Macaulay" of conditions on X_{σ} . We already know the following results:

(1.1) (Mumford et al. [4]) X_{σ} is nonsingular if and only if σ is nonsingular.

(1.2) (Ishida [2]) If r = 3 and X_{σ} is a local complete intersection, then $k[M \cap \sigma^{\vee}]$ is k-isomorphic to $k[x, y, z, w, u]/k[x, y, z, w, u](xz - w^{b}u^{\circ}, yw - u^{a})$ for a triple (a, b, c) of non-negative integers.

(1.3) (Stanley [5]) $k[M \cap \sigma^{\vee}]$ is a Gorenstein ring if and only if $M \cap int(\sigma^{\vee}) = m_{\sigma} + M \cap \sigma^{\vee}$ for an element $m_{\sigma} \in M$.

(1.4) (Hochster [1]) $k[M \cap \sigma^{\vee}]$ is always a Cohen-Macaulay ring.

Moreover Stanley [6] partially and Watanabe [7] completely classified $M \cap \sigma^{\vee}$ such that X_{σ} is a local complete intersection under the assumption

^{*} Partly supported by the Grants-in-Aid for Encouragement of Young Scientists, The Ministry of Education, Science and Culture, Japan.