A UNICITY THEOREM FOR MEROMORPHIC MAPS OF A COMPLETE KÄHLER MANIFOLD INTO $P^{N}(C)$

Dedicated to Professor Tadashi Kuroda on his sixtieth birthday

HIROTAKA FUJIMOTO

(Received July 25, 1985)

1. Introduction. In 1926, R. Nevanlinna proved the following unicity theorem for meromorphic functions on C ([12]).

THEOREM. Let ϕ , ψ be nonconstant meromorphic functions on C. If there exist five distinct values a_1, \dots, a_5 such that $\phi^{-1}(a_i) = \psi^{-1}(a_i)$ $(1 \le i \le 5)$, then $\phi \equiv \psi$.

The author gave several types of generalizations of this to the case of meromorphic maps of C^n into $P^N(C)$ in his papers [3] ~ [8]. In this paper, we study meromorphic maps of an *n*-dimensional complete Kähler manifold M into $P^N(C)$ and give a new type of unicity theorem in the case where the universal covering of M is biholomorphic to the ball in C^n and meromorphic maps satisfy a certain growth condition.

Let M be an *n*-dimensional connected Kähler manifold with Kähler form ω and f be a meromorphic map of M into $P^{N}(C)$. For $\rho \geq 0$ we say that f satisfies the condition (C_{ρ}) if there exists a nonzero bounded continuous real-valued function h on M such that

$$ho arOmega_f + dd^{\circ} \log h^{\scriptscriptstyle 2} \geq \operatorname{Ric} oldsymbol{\omega}$$
 ,

where Ω_f denotes the pull-back of the Fubini-Study metric form on $\mathbf{P}^{N}(\mathbf{C})$ by f and $d^{\circ} = (\sqrt{-1}/4\pi)(\bar{\partial} - \partial)$.

Take a point $p \in M$. We represent f as $f = (f_1: \cdots : f_{N+1})$ on a neighborhood of p with holomorphic functions f_i , where $\mathbf{f} := (f_1, \cdots, f_{N+1}) \not\equiv (0, \cdots, 0)$. Let \mathscr{M}_p denote the field of all germs of meromorphic functions at p. For each $k \geq 0$ we consider the \mathscr{M}_p -submodule \mathscr{F}_p^k of \mathscr{M}_p^{N+1} generated by all elements $(\partial^{|\alpha|}/\partial z^{\alpha})\mathbf{f}$ with $|\alpha| \leq k$, where $z = (z_1, \cdots, z_n)$ is a system of holomorphic local coordinates around p and $|\alpha| = \alpha_1 + \cdots + \alpha_n$ for $\alpha = (\alpha_1, \cdots, \alpha_n)$.

By definition, the k-th rank of f is given by

$$r_f(k) := \operatorname{rank}_{\mathscr{M}_p} \mathscr{F}_p^k - \operatorname{rank}_{\mathscr{M}_p} \mathscr{F}_p^{k-1}$$
,

which does not depend on the choices of a point $p \in M$, a reduced