Tôhoku Math. Journ. 38 (1986), 297-311.

SUBMANIFOLDS WITH PROPER *d*-PLANAR GEODESICS IMMERSED IN COMPLEX PROJECTIVE SPACES

JIN SUK PAK* AND KUNIO SAKAMOTO

(Received May 30, 1985)

Recently, several authors studied submaifolds with Introduction. "simple" geodesics immersed in space forms. For example, planar geodesic immersions were studied in [6], [8], [13], [14], geodesic normal sections in [3] and helical immersions in [15]. In [9], Nakagawa also introduced a notion of cubic geodesic immersions. Let M and \dot{M} be connected complete Riemannian manifolds of dimensions n and n + p, respectively. An isometric immersion ι of M into M is called a d-planar geodesic immersion if each geodesic in M is mapped locally under ι into a d-dimensional totally geodesic submanifold of \hat{M} . In particular, if a 3-planar geodesic immersion is isotropic, then it is called a *cubic geodesic immersion*. In this paper, we study a proper d-planar geodesic Kählerian immersion $\iota: M \to CP^{m}(c)$ of a Kähler manifold M into a complex projective space $CP^{m}(c)$ of constant holomorphic sectional curvature c and proper cubic geodesic totally real immersion $\iota: M \to CP^{m}(c)$ of a Riemannian manifold M, where "proper" means that the image of each geodesic in M is not (d-1)-planar. Here and elsewhere, m in N^m denotes the complex dimension, if N is a complex manifold.

In a complex projective space $CP^{m}(c)$ of complex dimension m, an odd-dimensional totally geodesic submanifold is a totally real submanifold $RP^{l}(c/4)$ of constant sectional curvature c/4. In §2 we show that if $c: M^{n} \to CP^{m}(c)$ is a proper *d*-planar geodesic Kählerian immersion of a Kähler manifold M^{n} and d is odd, then $M^{n} = CP^{n}(c/d)$ and ι is equivalent to the *d*-th Veronese map. Here we recall the definition of *k*-th Veronese map $(k = 1, 2, \cdots)$. This is a Kähler imbedding $CP^{n}(c/k) \to CP^{m'}(c)$ given by

$$[z_i]_{0\leq i\leq n}\mapsto \left[\left(\frac{k!}{k_0!\cdots k_n!}\right)^{1/2}z_0^{k_0}\cdots z_n^{k_n}\right]_{k_0+\cdots+k_n=k},$$

where [*] means the point of the projective space with the homogeneous coordinates * and $m' = \binom{n+k}{k} - 1$. More generally, we prove that if

^{*} Work done under partial support by Association of International Education, Japan.