Tôhoku Math. Journ. 38 (1986), 269-279.

INFINITESIMAL DEFORMATIONS OF TSUCHIHASHI'S CUSP SINGULARITIES

SHOETSU OGATA

(Received April 25, 1985)

0. Introduction. Let (X, x_0) be a normal isolated singularity of dimension n. Assume that X is a Stein neighborhood of the singular point x_0 and that x_0 is the only singularity of X. The set of first order infinitesimal deformations of X is the finite dimensional vector space T_X^1 , which is isomorphic to $\operatorname{Ext}_{0_X}^1(\mathcal{Q}_X^1, \mathcal{O}_X)$. In [FK] Freitag and Kiehl proved that Hilbert modular cusp singularities of dimension greater than two are rigid in the sense of Schlessinger [Sc], that is, $T_X^1 = 0$. Behnke and Nakamura computed T_X^1 for two dimensional cusp singularities ([B1], [B2] and [N]).

Here we are interested in deformations of normal isolated singularities constructed by Tsuchihashi in [T]. Theorem 3 shows that these singularities of dimension three are not rigid in general.

Thanks are due to Professors T. Oda, M. Namba and M.-N. Ishida for many helpful conversations.

1. Tsuchihashi's cusp singularities. Let N be a free Z-module of rank n > 1 and $N_R := N \bigotimes_{\mathbb{Z}} \mathbb{R}$. Consider a pair (C, Γ) consisting of a nondegenerate open convex cone C in N_R and a subgroup Γ in $GL(N) := \operatorname{Aut}_{\mathbb{Z}}(N)$ satisfying the following conditions:

(i) C is Γ -invariant.

(ii) The action of Γ on $D := C/R_{>0}$ is properly discontinuous and fixed point free.

(iii) The quotient space D/Γ is compact.

In [T] Tsuchihashi has associated to such a pair (C, Γ) an isolated singularity, which we may call Tsuchihashi's cusp singularity. This is a singular point of the normal analytic space $X := ((N_R + \sqrt{-1}C)/N \cdot \Gamma) \cup \{x_o\}$.

Let N^* be the dual Z-module of N with the natural pairing \langle , \rangle : $N^* \times N \to \mathbb{Z}$, and let dy and dy' the Lebesgue measures on N_R and N_R^* respectively. Let $C^* := \{y' \in N_R^*; \langle y', y \rangle > 0 \text{ for all } y \text{ in } \overline{C} \setminus \{0\}\}$ be the dual cone of C. The characteristic function of the cone C is

$$\phi_{\mathcal{C}}(y) := \int_{\mathcal{C}^*} \exp(-\langle y', y \rangle) dy'$$