STABILITY OF HARMONIC MAPS AND STANDARD MINIMAL IMMERSIONS

Yoshihiro Ohnita

(Received March 19, 1985)

1. Introduction. Let f be a smooth map of a compact Riemannian manifold M into another Riemannian manifold N. The energy functional E(f) for f is defined by

$$E(f) = (1/2) \int_{M} ||df||^2 dv_{M} .$$

A smooth map f of M into N is called a *harmonic map* if f is a critical point of the energy functional E. A harmonic map f is called *stable* if every second variation of E at f is nonnegative. Let S^n be an n-dimensional Euclidean sphere. Then the following remarkable theorems are known.

THEOREM (Xin [22]). For $n \ge 3$ there exists no nonconstant stable harmonic map from S^n to any Riemannian manifold.

THEOREM (Leung [5]). For $n \ge 3$ there exists no nonconstant stable harmonic map from any compact Riemannian manifold to S^n .

It is natural to ask what kind of a compact Riemannian manifold M has the property that there exists no nonconstant stable harmonic map from M to any Riemannian manifold nor from any compact Riemannian manifold to M. We call such an M harmonically unstable. We know topological restrictions on harmonically unstable Riemannian manifolds; if M is harmonically unstable, then by a classical result on closed geodesics we have $\pi_1(M) = \{1\}$ and by the theorem of Sacks and Uhlenbeck [15] $\pi_2(M) = \{1\}$.

The purpose of this note is to classify harmonically unstable compact symmetric spaces.

Theorem 1. A compact symmetric space M is harmonically unstable, if and only if M is a product of simply connected compact irreducible symmetric spaces belonging to the following list;

- (i) simple Lie groups of type A_n $(n \ge 2)$, B_2 and C_n $(n \ge 3)$,
- (ii) SU(2n)/Sp(n) $(n \ge 3)$,
- (iii) spheres S^n $(n \ge 3)$,