SOME REMARKS ON MEAN-VALUES OF SUBHARMONIC FUNCTIONS

DAVID H. ARMITAGE AND MYRON GOLDSTEIN

(Received March 4, 1985)

0. Introduction and notation. This paper is in two loosely related parts: the first part gives conditions for a nonnegative continuous function or its logarithm to be subharmonic, and the second includes a Fejér-Riesz type theorem for subharmonic functions.

The open ball, the closed ball, and the sphere of centre x and radius r in \mathbb{R}^n $(n \geq 2)$ are denoted by B(x, r), $\overline{B}(x, r)$ and S(x, r). We denote n-dimensional Lebesgue measure by ω and (n-1)-dimensional surface area measure on S(x, r) by σ , and we write $\Omega(r)$ for the volume of B(x, r) and $\Sigma(r)$ for the surface-area of S(x, r). If a function f, defined at least on $\overline{B}(x, r)$, is ω -integrable on B(x, r) and σ -integrable on S(x, r), we define means as follows:

$$A(f, x, r) = (\Omega(r))^{-1} \int_{B(x,r)} f d\omega$$

and

$$M(f, x, r) = (\Sigma(r))^{-1} \int_{S(x,r)} f d\sigma$$
.

Throughout the paper G will be a nonempty open subset of \mathbb{R}^n . Recall that a function is hypoharmonic in G if and only if in each connected component of G it is either subharmonic or identically $-\infty$. We shall say that a function is PL if its logarithm is hypoharmonic in G.

1. Mean value conditions for subharmonicity.

1.1. The following results are well-known.

THEOREM A. Let $u: G \rightarrow \mathbf{R}$ be continuous in G. Then u is subharmonic in G if and only if

$$A(u, x, r) \leq M(u, x, r)$$

whenever $\overline{B}(x, r) \subset G$.

THEOREM B. Let $u: G \to [0, \infty)$ be continuous in $G \subset \mathbb{R}^2$. Then u is PL if and only if