Tόhoku Math. Journ. 38(1986), 351-356.

TOTALLY GEODESIC FOLIATIONS AND KILLING FIELDS, II

GEN-ICHI OSHIKIRI

(Received May 30, 1985)

1. Introduction. A foliation $\mathscr F$ of a Riemannian manifold (M, g) is said to be totally geodesic if every leaf of *^* is a totally geodesic submanifold of *(M, g).* In [6], Johnson and Whitt studied some properties of Killing fields on complete connected Riemannian manifolds admitting codimension-one totally geodesic foliations by compact leaves. In [7], the author studied one of these properties of Killing fields on closed Rieman nian manifolds admitting not necessarily compact codimension-one totally geodesic foliations and proved the following: Let *(M, g)* be a closed connected Riemannian manifold and *J?~* be a codimension-one totally geodesic foliation of (M, g) . Then any Killing field Z on (M, g) preserves \mathscr{F} , that is, the flow of *Z* maps each leaf of \mathscr{F} to a leaf of \mathscr{F} .

In this paper, we extend this result to higher codimensions by study ing Jacobi fields along geodesies on totally geodesic leaves. We prove the following.

THEOREM. *Let (M, g) be a connected complete Riemannian manifold* and $\mathscr F$ be a totally geodesic foliation of (M, g) . Assume that the bundle *orthogonally complement to ^~ is also integrable. Then any Killing field Z on* (M, g) with bounded length, i.e., $g(Z, Z) \leq$ const. $\lt \infty$ on M, *preserves*

The proof will be given in Section 3. In Section 4, we give some examples and study a related topic.

2. **Preliminaries.** Let *(M, g)* be a connected complete Riemannian manifold and $\mathcal F$ be a codimension-q totally geodesic foliation of (M, g) . Denote by *D* the Riemannian connection of *(M, g)* and by *R* the curva ture tensor of *D*. We also denote $g(X, Y)$ by $\langle X, Y \rangle$. Let $c: \mathbb{R} \to M$ be a geodesic parametrized by arc length on a totally geodesic leaf *L* of *^* and $Y(t)$ be a Jacobi field along c . Then $Y(t)$ satisfies the Jacobi equation $D_{c'(t)}D_{c'(t)}Y(t) + R_tY(t) = 0$ where $R_tY(t) = R(Y(t), c'(t))c'(t)$. Set $x = c(0)$. We choose an orthonormal basis $\{E_1, \dots, E_p, X_1, \dots, X_q\}$ of T_xM with $E_i = c'(0)$, E_i , \cdots , $E_p \in T_x \mathcal{F}$ and X_i , \cdots , $X_q \in T_x \mathcal{F}^{\perp}$ where $dim(L) = p$