Tôhoku Math. Journ. 38 (1986), 595-598.

ON A MOMENT PROBLEM

Gwo Dong Lin

(Received December 16, 1985)

Abstract. Let n_0 be any fixed non-negative integer, $-\infty \leq a < b \leq \infty$ and $f(x) \geq 0$ an absolutely continuous function with $f'(x) \neq 0$, a.e. on (a, b). Then the sequence of functions $\{(f(x))^n e^{-f(x)}\}_{n=n_0}^{\infty}$ is complete in L(a, b) if and only if the function f(x) is strictly monotone on (a, b).

1. Introduction. Let $-\infty \leq a < b \leq \infty$, and let L(a, b) be the space of all summable functions defined on the interval (a, b). Then a sequence of functions $\{f_n(x)\}_{n=1}^{\infty}$ is said to be complete in L(a, b) if for every $g \in L(a, b)$, the equalities

 $\int_a^b g(x)f_n(x)dx = 0$, for all $n = 1, 2, \cdots$,

imply g(x) = 0, a.e. (almost everywhere) on (a, b). The well-known Müntz-Szász theorem (Boas [1, p. 235]) is concerned with a complete sequence of functions in L(a, b), where (a, b) is a *bounded* interval, and is stated as follows:

THEOREM A. Let $0 \leq a < b < \infty$ and $0 < n_1 < n_2 < \cdots$. Then $\{x^{n_i}\}_{i=1}^{\infty}$ is complete in L(a, b) if and only if $\sum_{i=1}^{\infty} 1/n_i = \infty$.

In this paper, we shall first consider the completeness of a sequence of functions $\{x^n e^{-x}\}$ in $L(a, \infty)$, where $a \ge 0$ (Theorem 1), then use a theorem of Zarecki to extend the result just obtained to the sequence of functions $\{(f(x))^n e^{-f(x)}\}$ (Theorem 2). Finally, we give some remarks on Laguerre and Hermite functions.

THEOREM 1. For any fixed integer $n_0 \ge 0$ and for any fixed real number $a \ge 0$, the sequence of functions $\{x^n e^{-x}\}_{n=n_0}^{\infty}$ is complete in $L(a, \infty)$.

THEOREM 2. Let n_0 be any fixed non-negative integer, $-\infty \leq a < b \leq \infty$ and $f(x) \geq 0$ an absolutely continuous function with $f'(x) \neq 0$, a.e. on (a, b). Then the sequence of functions $\{(f(x))^n e^{-f(x)}\}_{n=n_0}^{\infty}$ is complete in

AMS subject classification (1980): Primary 42A65, Secondary 26A46, 26A48. Key words and phrases: Complete, summable function, Müntz-Szász theorem, absolutely continuous function, and Laguerre functions.