Tôhoku Math. Journ. 38 (1986), 513-538.

QUATERNIONIC SUBMANIFOLDS IN QUATERNIONIC SYMMETRIC SPACES

HIROYUKI TASAKI

(Received September 24, 1985)

Contents

1.	Introduction	513
2.	Quaternionic symmetric spaces	514
3.	Reduction of the problem	517
4.	Preliminaries for classification of simple subalgebras of index 1	521
5.	ŝĩ(n, C)	525
6.	$\mathfrak{o}(n, C)$	526
7.	Homology classes represented by quaternionic submanifolds	532
8.	$G_2/SO(4)$. 536
Ref	References	

1. Introduction. The purposes of this paper are to classify quaternionic submanifolds in a quaternionic symmetric space and to investigate the homology classes represented by quaternionic submanifolds in a compact quaternionic symmetric spaces. The following results motivate the subject of this paper. Quaternionic submanifolds in a quaternionic Kähler manifold are minimal stable submanifolds and compact ones are homologically volume minimizing, as were proved by the author in [13].

Here we shall give the definitions of quaternionic Kähler manifolds and quaternionic submanifolds and state some properties of quaternionic submanifolds. A 4n-dimensional connected Riemannian manifold M is called a quaternionic Kähler manifold, if M has the following property: There is a point x in M such that, through an identification of $T_x(M)$ with H^n , the linear holonomy group of M at x is contained in Sp(n)Sp(1). In this situation, take a piecewise smooth curve τ from x to y for any point y in M and put

$$S_{y} = P_{\tau}Sp(1)P_{\tau}^{-1}$$
 ,

where P_{τ} is the parallel translation along the curve τ . S_y is independent of the choice of τ , because Sp(1) is a normal subgroup of Sp(n)Sp(1). We call $S = \{S_y\}_{y \in M}$ a quaternionic structure on M. A connected submanifold N of M is calld a quaternionic submanifold in M, if $T_y(N)$ is invariant under the action of S_y for each y in N. Alekseevskii [1] proved that a