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1. Introduction. The purposes of this paper are to classify quater-
nionic submanifolds in a quaternionic symmetric space and to investigate
the homology classes represented by quaternionic submanifolds in a com-
pact quaternionic symmetric spaces. The following results motivate the
subject of this paper. Quaternionic submanifolds in a quaternionic Kahler
manifold are minimal stable submanifolds and compact ones are homolo-
gically volume minimizing, as were proved by the author in [13].

Here we shall give the definitions of quaternionic Kahler manifolds
and quaternionic submanifolds and state some properties of quaternionic
submanifolds. A 4^-dimensional connected Riemannian manifold M is
called a quaternionic Kahler manifold, if M has the following property:
There is a point x in M such that, through an identification of TX(M)
with Hn, the linear holonomy group of M at x is contained in Sp(ri)Sp(l).
In this situation, take a piecewise smooth curve r from x to y for any
point y in M and put

where Pτ is the parallel translation along the curve τ. Sy is independent
of the choice of τ, because Sp(l) is a normal subgroup of Sp(ri)Sp(l). We
call S = {Sy}yeM a quaternionic structure on M. A connected submanifold
N of M is calld a quaternionic submanifold in M, if Ty(N) is invariant
under the action of Sy for each y in N. Alekseevskii [1] proved that a


