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Abstract. In this note, we construct, strong and classical solutions of
the Hopf equation, a statistical version of the Navier-Stokes equation on a
compact Riemannian manifold with or without boundary. Our points are
to regard the Hopf equation as a given Functional Derivative Equation
(F.D.E. for short) of second order, to derive the Navier-Stokes equation as
the characteristic equation of it and to give an exact meaning to the 'trace*
of the second order functional derivatives which appear in the Hopf equation.
To construct a solution of the Hopf-Foias equation with the energy in-
equality of strong form, we apply Foia§'s argument with slight modifica-
tions instead of using Prokhorov's compactness argument.

1. Introduction. Let (M, g) be a compact Riemannian manifold of
o

dimension d with or without boundary dM. We denote by Xσ(M) and
o

ΛJ(ikf), the space of all solenoidal vector fields on M which vanish near the

boundary and that of all divergence free 1-forms on M which vanish near

the boundary, respectively. H (resp. H) stands for the completion of the
O O r^j

space Λi(M) (resp. Xσ{M)) with respect to ZΛnorm (resp. ZΛ norm).

The aim of this paper is to solve the following problem.

(I) Find a real functional W(t, η) on [0, oo)χ£Γ, satisfying

(Li) JLwa, V) = \ \-i

ό7]j{X)

(1.2) 1 ^
vg{x) dx

for Ύ] = Ύ)(x) = Ύ]j(x)dx°' e k\{M) and t e (0, <*>), and

(1.3) W(tf 0) = 1 ,

(1.4) W(0, η) = W0{η) .

Here f(x, t) = fj(x, t)d/dxj e Xσ(M) for each t and W0(rj) is a given positive

definite functional on H satisfying


