THE RANGE AND PSEUDO-INVERSE OF A PRODUCT

LU SHIJIE

(Received February 12, 1986)

Abstract. By definition the cosine of the angle between the two subspaces M and N is $\sup\{|\langle u, v \rangle| : u \in M, v \in N, ||u|| = 1 = ||v||\}$. For operators A and B with closed range in Hilbert spaces, AB has closed range if and only if the angle between ker A and $B((\ker AB)^{\perp})$ is positive. Moreover, if we denote by A^{\dagger} the pseudo-inverse of A, then $(AB)^{\dagger}=B^{\dagger}A^{\dagger}$ if and only if $B((\ker AB)^{\perp}) \subset (\ker A)^{\perp}$ and $A^{*}((\ker B^{*}A^{*})^{\perp}) \subset (\ker B^{*})^{\perp}$.

Let H, K, L be Hilbert spaces over complex field. For a subspace $M \subset H$, we denote by M^{\perp} the orthogonal complement of M and by \overline{M} the closure of M. For two subspaces M and N of H, we shall say that the angle between M and N is θ , if

 $\cos \theta = \sup\{|\langle u, v \rangle| \colon u \in M, v \in N, ||u|| = 1 = ||v||\}.$

For convenience, we denote the angle by $\theta(M, N)$. Let C(H, K) (resp. B(H, K)) be the set of all closed linear operators (resp. bounded operators) from H to K. For $T \in C(H, K)$ we denote the domain of T by D(T), the kernel of T by ker T and the range of T by R(T). Each $T \in C(H, K)$ induces a one-to-one operator from (ker $T)^{\perp}$ onto TH. This induced operator is invertible. Define T^{\dagger} to be that inverse on TH and to be zero on $(TH)^{\perp}$. We call T^{\dagger} the pseudo-inverse of T. T^{\dagger} is bounded if and only if R(T) is closed (cf. [3, Theorem 3.1.2]). If H = K, we write B(H) instead of B(H, H).

A basic problem in the theory of pseudo-inverse is to determine when the range of a product is closed and the pseudo-inverse of a product is the product of the pseudo-inverses. For $A, B \in B(H)$ with closed range, Bouldin [1] indicated that the simple geometric condition

(1)
$$\theta(\ker A \cap (\ker A \cap BH)^{\perp}, BH) > 0$$

is both necessary and sufficient for AB to have closed range. Furthermore, he proved in [2] that $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$ if and only if the following conditions hold:

- (2) $(AB)^{\dagger}$ is bounded;
- (3) A^*H is invariant under BB^* ;
- (4) $A^*H \cap \ker B^*$ is invariant under A^*A .