SEMI-SYMMETRIC LORENTZIAN HYPERSURFACES

IGNACE VAN DE WOESTIJNE AND LEOPOLD VERSTRAELEN

Dedicated to Professor Dr. A. Lichnerowicz for his seventieth birthday

(Received January 28, 1986)

1. Introduction. Nomizu [2] classified semi-symmetric hypersurfaces in Euclidean spaces. In this paper, we shall give a classification of semisymmetric Lorentzian hypersurfaces in Minkowski spaces. We recall that a semi- or pseudo-Riemannian manifold M is said to be semi-symmetric, if it satisfies the condition $R \cdot R = 0$, whereby R is the Riemmann-Christoffel curvature tensor of M and where the first tensor acts on the second one as a derivation. Semi-symmetry is a proper generalization of local symmetry, and was first studied by Cartan and Lichnerowicz. Recently, a general study of semi-symmetric Riemannian manifolds was made by Szabó [4].

The main results of this paper can be stated as follows.

THEOREM 1. Let M^n be a Lorentzian hypersurface of dimension nin a Minkowski space \mathbf{R}_1^{n+1} . Suppose that the type number k(x) is ≥ 3 at a point x of M^n . Then M^n is semi-symmetric at x if and only if the shape operator A_x of M^n at x has the form

(1)
$$A_{x} = \left[\frac{\lambda I_{k(x)}}{0} \middle| \begin{array}{c} 0\\ 0_{n-k(x)} \end{array}\right], \quad \lambda \in \mathbb{R} \setminus \{0\}$$

with respect to a suitable orthonormal frame of $T_x M^n$.

THEOREM 2. Let M^n be a connected and complete Lorentzian hypersurface of dimension n in a Minkowski space \mathbf{R}_1^{n+1} . Suppose that the type number is ≥ 3 at least at one point of M^n . Then M^n is semisymmetric if and only if

(a) $M^n = S_1^k \times \mathbf{R}^{n-k}$

or

(b) $M^n = S^k \times R_1^{n-k}$,

for some $k \ge 3$. In case (a), S_1^k is a Lorentzian hypersphere in a Minkowski subspace \mathbf{R}_1^{k+1} of \mathbf{R}_1^{n+1} and \mathbf{R}^{n-k} is a Euclidean subspace of \mathbf{R}_1^{n+1} orthogonal to \mathbf{R}_1^{k+1} . In case (b), S^k is a hypersphere in a Euclidean