ALMOST PERIODIC SOLUTIONS OF A SYSTEM OF INTEGRODIFFERENTIAL EQUATIONS

SATORU MURAKAMI

(Received January 25, 1986)

The purpose of this article is to discuss the existence of almost periodic solutions of a system of almost periodic integrodifferential equations

$$(E) \quad \dot{x}_i(t) = h_i(x_i(t)) \Big\{ b_i(t) - a_{ii}(t)x_i(t) - \sum\limits_{\substack{j=1 \ j
eq i}}^k a_{ij}(t) \int_{-\infty}^t K_{ij}(t-u) G_i(x_j(u)) du \Big\} \; , \ i = 1, \, 2, \, \cdots, \, k \; .$$

which describes a model of the dynamics of a k-species system in mathematical ecology when $h_i(s) = G_i(s) \equiv s$. When $h_i(s) = G_i(s) \equiv s$ and $a_{ij}(t)$, $b_i(t)$ are ω -periodic, Gopalsamy [2] has recently discussed the existence of ω -periodic solutions of System (E) under some conditions. In order to obtain an ω -periodic solution of System (E), he has investigated the existence of ω -periodic solutions of another system

$$egin{align} \dot{x}_i(t) &= h_i(x_i(t)) \Big\{ b_i(t) - a_{ii}(t) x_i(t) \ &- \sum\limits_{\substack{j=1 \ j
eq i}}^k a_{ij}(t) \int\limits_{t-\omega}^t \sum\limits_{r=0}^\infty K_{ij}(t-u+r\omega) G_i(x_j(u)) du \Big\} \;, \ &i=1,\,2,\,\cdots,\,k \;, \end{aligned}$$

instead of the original system (E), because any ω -periodic solution of System (E) is also an ω -periodic solution of System (E_0) and vice versa. As easily seen, however, we cannot directly employ Gopalsamy's idea when System (E) is almost periodic. In this article, we shall investigate some stability properties of a solution of System (E), and consequently obtain an almost periodic solution of System (E). We emphasize that our result contains Theorem 2.1 in [2] as a special case.

In what follows, we denote by R^k the k-dimensional real Euclidean space and by |x| the norm of $x \in R^k$. Throughout this paper, we suppose that the functions h_i , b_i , a_{ij} , K_{ij} and G_i in System (E) are real-valued continuous functions on $R := R^1$ and that the following conditions are satisfied: