ON A METHOD TO CONSTRUCT ANALYTIC ACTIONS OF NON-COMPACT LIE GROUPS ON A SPHERE

FUICHI UCHIDA

(Received January 20, 1986)

0. Introduction. Let M be a square matrix of degree n with real coefficients, that is, $M \in M_n(\mathbf{R})$. We say that M satisfies the *outward* transversality condition if

 $rac{d}{dt} \| \exp(tM) x \| > 0 ext{ for each } x \in {oldsymbol R}_0^n = {oldsymbol R}^n - \{0\} ext{ and } t \in {oldsymbol R} \; .$

In this case, there exists a unique real valued analytic function τ on \mathbf{R}_0^n such that $||\exp(\tau(x)M)x|| = 1$, and hence we can define an analytic mapping π^M of \mathbf{R}_0^n onto the unit (n-1)-sphere S^{n-1} by $\pi^M(x) = \exp(\tau(x)M)x$.

Let G be a Lie group, $\rho: G \to GL(n, \mathbb{R})$ a matricial representation, and M a square matrix of degree n with real coefficients satisfying the outward transversality condition. We can define an analytic mapping $\xi:$ $G \times S^{n-1} \to S^{n-1}$ by $\xi(g, x) = \pi^{\mathbb{M}}(\rho(g)x)$, and we see that ξ is an analytic G-action on S^{n-1} if $\rho(g)M = M\rho(g)$ for any $g \in G$. We call ξ a twisted linear action of G on S^{n-1} associated to the representation ρ . In particular, if M is the identity matrix, we call ξ a linear action of G on S^{n-1} associated to the representation ρ .

Let G be a compact Lie group and $\rho: G \to GL(n, \mathbb{R})$ a matricial representation. Then we shall show that any twisted linear action of G on S^{n-1} associated to ρ is equivariantly analytically diffeomorphic to the linear action of G on S^{n-1} associated to ρ . On the other hand, if G is a non-compact Lie group, sometimes we can construct uncountably many topologically distinct twisted linear actions of G associated to only one matricial representation (cf. [4, §6]). We shall study such an example in the final section.

1. Outward transversality condition.

1.1. Let $u = (u_i)$ and $v = (v_i)$ be vectors in \mathbb{R}^n . As usual, we denote their inner product by $u \cdot v = \sum_i u_i v_i$ and the length of u by $||u|| = \sqrt{u \cdot u}$.

LEMMA 1.1. Let $M \in M_n(\mathbf{R})$ and assume that M satisfies the outward transversality condition. Then, (i)