SPECIAL DIVISORS AND VECTOR BUNDLES

NARASIMHAN SUNDARAM

(Received January 10, 1986)

Introduction. Let X be a nonsingular, complete curve of genus $g \geq 3$ over C, the field of complex numbers and let J be the Jacobian of X, the space of isomorphism classes of line bundles of degree 0 on X. It is a complex torus of dimension g. If we denote by ϕ the Abel-Jacobi mapping of X_d , the d-fold symmetric product of the curve, into J, Abel's theorem assures us that $\phi^{-1}(\phi(D))$ is nothing but the projective linear system $P(H^0(L_D))$, associated to the line bundle L_D given by the effective divisor $D \in X_d$ on X. When d lies between 0 and (g-1), $\phi(X_d)$ is a proper subvariety of J. This subvariety $\phi(X_d)$ admits a natural filtration by subvarieties

$$\phi(X_d) = W_d^0 \supseteq W_d^1 \cdots \supseteq W_d^r \cdots$$

defined in terms of the dimension of the fibre of ϕ . For example, $W_d^r = \{\phi(D) | \text{dimension of } \phi^{-1}(\phi(D)) \ge r\}$. It is a classical problem to study the structure of these special linear systems.

Formally, one may define an effective divisor D on X to be special if $H^{1}(X, L_{D}) \neq 0$.

In 1874, A. Brill and M. Noether published their investigations on special linear systems and conjectured that on a very general curve X, the dimension of W_d^r is given by $\rho(r,d) = g - (r+1)(g-d+r)$. In 1980, Griffiths and Harris [G-H] settled this conjecture affirmatively.

Picking up the thread from here, we extend the notion of special divisors to stable vector bundles on X. Indeed, a vector bundle V on X is said to be stable, if for every subbundle $W \subseteq V$ with $W \neq 0$, $\mu(W) = (\deg W)/(\operatorname{rank} W) < \mu(V)$. Such a bundle with nonnegative degree is said to be special if $H^1(X, V) \neq 0$. Replacing J, the isomorphism classes of line bundles of degree zero, by $U_{n,d}$, the variety consisting of isomorphism classes of stable bundles of rank n and degree d we may define

$$W^r_d=ar{U}^r_d$$
 , $U^r_d=\{V\in U_{n,d}|h^{\scriptscriptstyle 0}(X,\;V)\geqq r+1\}$

where W_d^r is the Zariski closure of U_d^r in $M_{n,d}$, the "natural compactification" of $U_{n,d}$. (See Section 1.12.2, Chapter I).

In this article, we undertake investigations of