Tôhoku Math. Journ. 39 (1987), 153-173.

COMPACT OPERATORS IN TYPE III₂ AND TYPE III₀ FACTORS, II

HERBERT HALPERN AND VICTOR KAFTAL

(Received October 21, 1985)

1. Introduction and notations. In this paper we continue the program started in [8] of studing notions of compact operators in type III_{λ} $(0 \leq \lambda < 1)$ factors. Given a type III_{λ} factor M operating on a separable Hilbert space H, we represent it as the crossed product of a type II_{∞} algebra N (a factor for $0 < \lambda < 1$ or an algebra with diffuse center for $\lambda = 0$) by an automorphism θ that λ -scales a trace τ (i.e., $\tau \circ \theta = \lambda \tau$ for $0 < \lambda < 1$ or $\tau \circ \theta \leq \lambda_0 \tau$ with $\lambda_0 < 1$ for $\lambda = 0$). We embed N in M and let E be the canonical normal conditional expectation $E: M \rightarrow N$, u be the unitary operator implementing θ (i.e., $Ad u = \theta$) such that $\{N, u\}'' = M$ and $\varphi = \tau \circ E$ be the dual weight of τ . Then φ is a lacunary weight, i.e., 1 is an isolated point in Sp σ^{φ} , $\lambda_0 = \sup \{\lambda \in \operatorname{Sp} \sigma^{\varphi} | \lambda < 1\}$, N is the centralizer of φ and $M \cap N' = N \cap N'$. For further references see [2, § 4, 5] and [16, § 30.4].

In [8] we denoted by I(N) the two sided ideal of N generated by the finite projections of N, by J(N) the norm closure of I(N) and we defined

$$oldsymbol{I} = ext{span} \{x \in oldsymbol{M}^+ \, | \, E(x) \in oldsymbol{I}(oldsymbol{N}) \}$$
 , $oldsymbol{M}_arphi = ext{span} \{x \in oldsymbol{M}^+ \, | \, arphi(x) < \infty \}$,

 $J = ar{I}$ where the bar denotes the norm closure.

We then obtained the embeddings for $0 < \lambda < 1$ [8, Theorem 6.2]

$$I \subset M_{\varphi} \subset J$$

analogous to the classical embeddings of finite rank, trace-class and compact operator ideals. For the case $\lambda = 0$ we obtained a similar embedding involving the center of N [8, Corollary 6.5]. We then proved the generalization of several of the classical properties of compact operators, (Riesz, Calkin, Rellich and Hilbert properties [8, Theorem 5.3, Proposition 5.6]). In [8, Remark 4.6] we noticed that J is minimal among the C^* -algebras $C \supset E(C) = J(N)$ which are two sided N-modules, while the maximal one is the algebra K given by:

DEFINITION 1.1. $K = \operatorname{span}\{x \in M^+ | E(x) \in J(N)\}.$