THE GALOIS GROUPS OF THE POLYNOMIALS $x^n + ax^s + b$, II

HIROYUKI OSADA

(Received August 19, 1986)

Introduction. In the previous paper [3], we have shown that the Galois group of a polynomial $f(x) = x^n + ax^s + b$ (with rational integers a and b) over the rational number field Q is isomorphic to the symmetric group S_n of degree n under the following conditions:

(1) f(x) is irreducible over Q.

(2) $a = a_0c^n$, $b = b_0c^n$ and $(a_0c(n - s)s, nb_0) = 1$ (relatively prime).

(3) $|D_0(f)|$ is not a square, where

$$D_{0}(f) = n^{n}b_{0}^{n-s} + (-1)^{n-1}s^{s}(n-s)^{n-s}a_{0}^{n}c^{ns}$$

is a factor of the discriminant D(f) of f(x).

(4) $p||b_0$ for some prime number p.

(5) There exists a prime number q such that q|s and k < q for any positive integer k with k|n and k < s/2.

In this paper, we shall first show that the same result holds without the assumption (5) (Theorem 1). Further, we shall show that there exist infinitely many polynomials $x^n + ax^s + p$ satisfying the above conditions (1), (2), (3) and (4) (Theorem 2).

By Hilbert's irreducibility theorem [2], there exist infinitely many Galois extensions with Galois group S_n or A_n for any n. Schur [4, p. 193-194] gave a criterion for the Galois group of a polynomial over Qto be isomorphic to S_n or to A_n . We here give another criterion for the Galois group of a polynomial over Q to be isomorphic to S_n or to A_n (Theorem 3). As another consequence of our results, we can also construct infinitely many polynomials with the Galois groups A_4 , A_5 and A_7 (Corollary 3, Corollary 4 to Theorem 3 and Proposition 2). Besides, we give numerical examples of polynomials with Galois group A_7 .

The author would like to thank the referee for his valuable advices.

Let Z be the ring of rational integers. Throughout this paper, we shall denote by K, G and D(f) the splitting field, the Galois group and the discriminant of a polynomial $f(x) \in \mathbb{Z}[x]$, respectively.

THEOREM 1. Let $f(x) = x^n + ax^s + b$ be a polynomial in Z[x]. Let $a = a_0c^n$ and $b = b_0c^n$. Then the Galois group G is isomorphic to the