A CLASS OF DIFFERENTIAL EQUATIONS OF FUCHSIAN TYPE

Dedicated to Professor Tadashi Kuroda on his sixtieth birthday

ΜΑΚΟΤΟ ΝΑΜΒΑ

(Received July 28, 1986)

1. Introduction. The pair of the period integrals

$$Y = \left(\int_{\tau} \frac{dz}{w}, \int_{\tau} \frac{zdz}{w}\right)$$
 for a 1-cycle γ

of the family of elliptic curves

$$w^{\scriptscriptstyle 2}=4z^{\scriptscriptstyle 3}-xz-y$$
 ,

parametrized by $(x, y) \in C^2$ with $\Delta = x^3 - 27y^2 \neq 0$, is known to satisfy the following differential equation of Fuchsian type of rank two on the complex projective plane $P^2 = P^2(C)$:

$$(1.1) dY = Y\Omega .$$

Here Ω is a (2×2) -matrix-valued meromorphic 1-form on P^2 defined by

•

The differential equation (1.1) has regular singularity along $C \cup L_{\infty}$, where C is the closure in P^2 of the affine curve $\{(x, y) \in C^2 | \Delta = 0\}$ and L_{∞} is the line at infinity.

For $\{\gamma_1, \gamma_2\}$ which gives rise to a Z-basis for the first homology group of the elliptic curve with the intersection number $\gamma_1 \cdot \gamma_2 = 1$, the multivalued map

$$S: \boldsymbol{P}^2 - C \cup L_{\infty} \to \boldsymbol{C}^2$$

which sends (x, y) to

$$(u, v) = \left(\int_{\tau_1} \frac{dz}{w}, \int_{\tau_2} \frac{dz}{w}\right)$$

has the single-valued inverse map

$$S^{\scriptscriptstyle -1} {:} \, D \mathop{
ightarrow} {oldsymbol{P}}^2 - C \cup L_\infty$$
 ,