A CANONICAL DECOMPOSITION OF AUTOMORPHIC FORMS WHICH VANISH ON AN INVARIANT MEASURABLE SUBSET

Dedicated to Professor Tadashi Kuroda on his sixtieth birthday

HIROMI OHTAKE

(Received April 14, 1986)

Introduction. Let Γ be a discrete subgroup of the real Möbius group We denote by $\Omega(\Gamma)$ the region of discontinuity of Γ . Let PSL(2;**R**). σ be a arGamma-invariant closed subset of the extended real line $\widehat{m{R}}$ such that $\#\sigma \geq 3$ and $\sigma \ni \infty$, and let D be the component of $\Omega(\Gamma) - \sigma$ containing the upper half-plane U. Then D = U or $D = \Omega(\Gamma) - \sigma$ according as $\sigma = \hat{R}$ or not. Let E be a Γ -invariant measurable subset of D, and put V = D - E, where if $D \neq U$, then E is assumed to be symmetric with respect to **R** in the sense that $\overline{z} \in E$ whenever $z \in E$. Furthermore, for an integer $q \ge 2$, let L^p , $1 \le p < \infty$, (resp. L^{∞}) be the Banach space consisting of all the *p*-integrable (resp. bounded) measurable automorphic forms of weight -2q on D for Γ , which are symmetric if D is symmetric (see Section 1 for the precise definition). We denote by A^{p} , $1 \leq 1$ $p \leq \infty$, the closed subspace consisting of all the holomorphic elements in L^p , and set $L^p(V) = \{\mu \in L^p; \mu|_E = 0\}$ and $A^p|_V = \{\chi_V \phi; \phi \in A^p\}$, where χ_{v} is the characteristic function of V. For $1 \leq p < \infty$ and p' satisfying 1/p + 1/p' = 1, $L^{p'}$ is isomorphic to the dual space of L^p . We denote by $(A^p)^{\perp}$ ($\subset L^{p'}$) the annihilator of A^p .

In the present paper, we investigate conditions for E under which $(A^{p})^{\perp} \cap L^{p'}(V)$ and $A^{p'}|_{v}$ are closed and complementary to each other in $L^{p'}(V)$, and give two kinds of answers to this question (see Theorems 1 and 3 below). This problem occured in studying extremal quasiconformal mappings with dilatation bound (see, for example, Sakan [10]). Our results can be applied to the study of quasiconformal mappings and Teichmüller spaces. These applications will be discussed in Ohtake [9].

Throughout this paper, as natural assumptions for the problem, we require that V has positive measure and $A^p \neq \{0\}$. We note that if E has (2-dimensional Lebesgue) measure zero, then the spaces $(A^p)^{\perp} \cap$

Partly supported by the Grants-in-Aid for Encouragement of Young Scientists, The Ministry of Education, Science and Calture, Japan.