Tôhoku Math. Journ. 39 (1987), 543-555.

NORMS OF HANKEL OPERATORS AND UNIFORM ALGEBRAS, II

TAKAHIKO NAKAZI*

(Received September 12, 1986)

Abstract. Let H^{∞} be an abstract Hardy space associated with a uniform algebra. Denoting by (f) the coset in $(L^{\infty})^{-1}/(H^{\infty})^{-1}$ of an f in $(L^{\infty})^{-1}$, define $\|(f)\| = \inf\{\|g\|_{\infty} \|g^{-1}\|_{\infty}; g \in (f)\}$ and $\tilde{\tau}_0 = \sup\{\|(f)\|; (f) \in (L^{\infty})^{-1}/(H^{\infty})^{-1}\}$. If $\tilde{\tau}_0$ is finite, we show that the norms of Hankel operators are equivalent to the dual norms of H^1 or the distances of the symbols of Hankel operators from H^{∞} . If H^{∞} is the algebra of bounded analytic functions on a multiply connected domain, then we show that $\tilde{\tau}_0$ is finite and we determine the essential norms of Hankel operators.

0. Introduction. Let X be a compact Hausdorff space, let C(X) be the algebra of complex-valued continuous functions on X, and let A be a uniform algebra on X. For $\tau \in M_A$, the maximal ideal space of A, set $A_0 = \{f \in A; \tau(f) = 0\}$. Let m be a representing measure for τ on X.

The abstract Hardy space $H^p = H^p(m)$, $1 \leq p \leq \infty$, determined by A is defined to be the closure of A in $L^p = L^p(m)$ when p is finite and to be the weak*-closure of A in $L^\infty = L^\infty(m)$ when p is infinite. Put $H^p_0 = \{f \in H^p; \int_x fdm = 0\}$, $K^p = \{f \in L^p; \int_x fgdm = 0 \text{ for all } g \in A_0\}$ and $K^p_0 = \{f \in K^p; \int_x fdm = 0\}$. Then $H^p_0 \subset K^p_0$ and $H^p \subset K^p$.

Let $Q^{(1)}$ be the orthogonal projection from L^2 to $(H^2)^{\perp} = \overline{K}_0^2$ and $Q^{(2)}$ the orthogonal projection from L^2 to \overline{H}_0^2 . For a function ϕ in L^{∞} we denote by M_{ϕ} the multiplication operator on L^2 determined by ϕ . As in the previous paper [14], two generalizations of the classical Hankel operators are defined as follows. For ϕ in L^{∞} and f in H^2

$$H^{(j)}_{\phi}f=Q^{(j)}M_{\phi}f \ \ (j=1,\,2) \; .$$

If A is a disc algebra and $\tau(f) = \tilde{f}(0)$, where \tilde{f} denotes the holomorphic extension of f in A, then τ is in M_A . The normalized Lebesgue measure m on the unit circle T is a representing measure for τ . Then H^2 is the classical Hardy space and $H_0^2 = K_0^2$. Hence $H_{\phi}^{(1)} = H_{\phi}^{(2)}$ and it is the classical Hankel operator H_{ϕ} . It is well known that

^{*} This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.