Tόhoku Math. Journ. 39(1987), 543-555.

NORMS OF HANKEL OPERATORS AND UNIFORM ALGEBRAS, II

TAKAHIKO NAKAZI*

(Received September 12, 1986)

Abstract. Let H^{∞} be an abstract Hardy space associated with a uniform algebra. Denoting by (f) the coset in $(L^{\infty})^{-1}/(H^{\infty})^{-1}$ of an f in $(L^{\infty})^{-1}$, define $||(f)|| = \inf{||g||_{\infty}||g^{-1}||_{\infty}}; g \in (f)$ } and $\gamma_0 = \sup{(||(f)||; (f) \in (L^{\infty})^{-1}/(H^{\infty})^{-1}}.$ If γ_0 is finite, we show that the norms of Hankel operators are equivalent to the dual norms of $H¹$ or the distances of the symbols of Hankel operators from H^{∞} . If H^{∞} is the algebra of bounded analytic functions on a multiply connected domain, then we show that τ_0 is finite and we determine the essential norms of Hankel operators.

0. Introduction. Let *X* be a compact Hausdorff space, let *C(X)* be the algebra of complex-valued continuous functions on *X,* and let *A* be a uniform algebra on X. For $\tau \in M_A$, the maximal ideal space of A, set $A_0 = \{f \in A; \tau(f) = 0\}.$ Let *m* be a representing measure for *τ* on *X*.

The abstract Hardy space $H^p = H^p(m)$, $1 \leq p \leq \infty$, determined by A is defined to be the closure of *A* in $L^p = L^p(m)$ when *p* is finite and to be the weak*-closure of *A* in $L^{\infty} = L^{\infty}(m)$ when *p* is infinite. Put $H_0^p =$ $\left\{f\in H^p\text{;}\ \left\lfloor\begin{smallmatrix} fdm=0 \end{smallmatrix}\right\rfloor, \ K^p=\left\{f\in L^p\text{;}\ \left\lfloor\begin{smallmatrix} fgdm=0 \end{smallmatrix}\right. \text{for all }\ g\in A_0\right\rfloor\text{ and }\ K^p_0=\text{.} \end{array}\right\}$ $\Big\{f\in K^p;\ \Big\lfloor\int f dm=0\Big\rfloor\Big\}. \quad \text{Then} \ \ H_0^p\!\subset\! K_0^p \ \ \text{and} \ \ H^p\!\subset\! K^p.$

Let $\tilde{Q}^{(1)}$ be the orthogonal projection from L^2 to $(H^2)^{\perp} = \bar{K}_0^2$ and $Q^{(2)}$ the orthogonal projection from L^2 to \bar{H}^2_0 . For a function ϕ in L^{∞} we denote by M_{ϕ} the multiplication operator on L^2 determined by ϕ . As in the previous paper [14], two generalizations of the classical Hankel oper ators are defined as follows. For ϕ in L^{∞} and f in H^2

$$
H_{\phi}^{(j)}f = Q^{(j)}M_{\phi}f \quad (j = 1, 2).
$$

If *A* is a disc algebra and $\tau(f) = \tilde{f}(0)$, where \tilde{f} denotes the holomorphic extension of f in A, then τ is in M_A . The normalized Lebesgue measure m on the unit circle T is a representing measure for τ . Then H^2 is the classical Hardy space and $H_0^2 = K_0^2$. Hence $H_{\varphi}^{(1)} = H_{\varphi}^{(2)}$ and it is the classical Hankel operator $H₆$. It is well known that

^{*} This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.