VECTOR BUNDLES OVER QUATERNIONIC KÄHLER MANIFOLDS

Takashi Nitta

(Received February 28, 1987)

Introduction. On vector bundles over oriented 4-dimensional Riemannian manifolds, the notion of self-dual and anti-self-dual connections plays an important role in the geometry of 4-dimensional Yang-Mills theory (see Atiyah, Hitchin and Singer [A-H-S]).

On the other hand, in his differential-geometric study of stable holomorphic vector bundles, Kobayashi [K] introduced the concept of Einstein-Hermitian vector bundles over Kähler manifolds. Let E be a vector bundle over a quaternionic Kähler manifold M, and $p: Z \to M$ the corresponding twistor space defined by Salamon [S1]. Now the purpose of the present paper is to give a quaternionic Kähler analogue of self-dual and anti-self-dual connections, and then to construct a natural correspondence between E's with such connections and the set of Einstein-Hermitian vector bundles over Z.

Let H be the skew field of quaternions. Then the $Sp(n) \cdot Sp(1)$-module $\Lambda^2 H^*$ is a direct sum $N'_2 \oplus N''_2 \oplus L_2$ of its irreducible submodules N'_2, N''_2, L_2, where N'_2 (resp. L_2) is the submodule of the elements fixed by $Sp(n)$ (resp. $Sp(1)$) and for $n = 1$, we have $N''_1 = \{0\}$. Hence, the vector bundle $\Lambda^2 T^* M$ is written as a direct sum $A'_2 \oplus A''_2 \oplus B_2$ of its holonomy-invariant subbundles in such a way that A'_2, A''_2, B_2 correspond respectively to N'_2, N''_2, L_2. Now, a connection for E is called an A'_2-connection (resp. B_2-connection) if the corresponding curvature is an $\text{End}(E)$-valued A'_2-form (resp. B_2-form). Then we have:

Theorem (0.1). All A'_2-connections and also all B_2-connections are Yang-Mills connections.

Furthermore, for E with a B_2-connection we can associate an E-valued elliptic complex (cf. (3.2)) similar to those of Salamon [S2]. Such complexes allow us to analyze the space of infinitesimal deformations of B_2-connections (see Theorem (3.5)).

For our quaternionic Kähler manifold M, a pair (E, D_E) of a vector bundle E over M and a B_2-connection D_E on E is called a Hermitian pair on M if D_E is a Hermitian connection on E. On the other hand, a pair (F, D_F) of a holomorphic vector bundle over Z and a Hermitian $(1, 0)$-