ROOT STRINGS WITH THREE OR FOUR REAL ROOTS IN KAC-MOODY ROOT SYSTEMS

Dedicated to Professor Eiichi Abe on his sixtieth birthday

JUN MORITA

(Received June 30, 1987)

0. Introduction. A characterization and a presentation of a (universal) Kac-Moody group over a field (of any characteristic) have been given by Tits [6]. Such a presentation, which is a natural generalization of Steinberg's one for a (simply connected) split semisimple algebraic group over a field (cf. [5]), is conjectured by E. Abe and established by J. Tits. The most interesting part of the presentation is the so-called "commutation relation", which is deeply related to the root strings and whose explicit description is given in [4]. In this paper, we will discuss certain root strings in Kac-Moody root systems, and give some direct applications to the associated Kac-Moody groups. Our main result is as follows.

Let $A = (a_{ij})$ be an $n \times n$ generalized Cartan matrix, Δ the associated root system, and Δ^{re} the set of real roots. Put $r(\alpha; \beta) = \# |\{\beta + k\alpha | k \in \mathbb{Z}\} \cap \Delta^{re}|$ for $(\alpha, \beta) \in \Delta^{re} \times \Delta$. Then the following two conditions are equivalent.

(1) $r(\alpha; \beta) = 3 \text{ or } 4 \text{ for some } (\alpha, \beta) \in \Delta^{re} \times \Delta$.

(2) $a_{ij} = -1$ and $a_{ji} < -1$ for some i, j $(1 \leq i, j \leq n)$.

As a corollary, we can simplify the Steinberg-Tits presentation of the associated Kac-Moody group in the case when A has a certain property.

1. Notation and lemmas. Let $A = (a_{ij})_{i,j \in I}$ be an $n \times n$ generalized Cartan matrix, $(\mathfrak{h}, \Pi, \Pi^{\vee})$ a realization of A, and $\mathfrak{g}(A)$ the Kac-Moody Lie algebra (over C associated with A), where $I = \{1, 2, \dots, n\}, \Pi = \{\alpha_1, \dots, \alpha_n\}, \Pi^{\vee} = \{h_1, \dots, h_n\}$ and $\alpha_i(h_j) = a_{ji}$ (cf. [1]). We denote by Wthe Weyl group with simple reflections w_1, \dots, w_n . Let Δ be the root system of $\mathfrak{g}(A)$ with Π as simple roots, $\Delta^{\mathrm{re}} = \{w(\alpha) | w \in W, \alpha \in \Pi\}$ the set of real roots, Δ_+ the set of positive roots, and Δ_+^{re} the set of positive real roots. For each $\alpha \in \Delta^{\mathrm{re}}$, let $h_{\alpha} \in \mathfrak{h}$ be the dual root of α . Then both $\alpha(h_{\beta})$ and $\beta(h_{\alpha})$ have the same sign (one of +, 0, -) for all $\alpha, \beta \in \Delta^{\mathrm{re}}$ (cf. [3]). Put $\operatorname{ht}(\alpha) = \sum_{k=1}^{n} c_k$, called the height of α , if $\alpha = \sum_{k=1}^{n} c_k \alpha_k \in \Delta$. Let $S(\alpha; \beta) = \{\beta + k\alpha | k \in \mathbb{Z}\} \cap \Delta$ for $(\alpha, \beta) \in \Delta^{\mathrm{re}} \times \Delta$. This $S(\alpha; \beta)$ is called