Tôhoku Math. J. 47 (1995), 499-508

CONSTANT MEAN CURVATURE HYPERSURFACES IN NONCOMPACT SYMMETRIC SPACES

NANY LEE

(Received May 6, 1994, revised November 10, 1994)

Abstract. Here, we compute the mean curvature of the geodesic sphere at any point in some symmetric spaces and determine the lower bound of the mean curvature of a closed hypersurface of constant mean curvature in it. With the Hessian Comparison Theorem, we also show that there is a lower bound for the mean curvature of any closed hypersurface of constant mean curvature in a manifold with a pole satisfying a curvature condition.

1. Introduction. In this article, we study closed hypersurfaces of constant mean curvature in noncompact symmetric spaces or, more generally, the product of such spaces with a Euclidean space. These closed hypersurfaces of constant mean curvature are called soap bubbles in [HH89] and we refer the readers to this paper as well as [Kap90], [Kap91] and the references there for a discussion of the historical as well as mathematical background of these hypersurfaces. Our main theorem in this direction is the determination of a lower bound of the mean curvature of these hypersurfaces in terms of $\Lambda(M)$, defined as follows. Let M be such a space and let p be any point in M. For $v \in T_pM$, define a symmetric linear map $K_v: T_pM \to T_pM$ by

$$K_v(X) = R(X, v)v$$
, for $X \in T_n M$.

We let

$$\Lambda(M) = \max\left\{ \sum_{i=1}^{n} c_1(v) : v \in T_p(M) \text{ and } \|v\| = 1 \right\}$$

where $\{c_1(v)^2, \ldots, c_n(v)^2\}$ are all the eigenvalues of K_v . Throughout this paper, we assume that all the c_i 's are nonnegative without loss of generality. This lower bound should be compared with an earlier result in the same direction in [Hsi92]. While Hsiang's result is in terms of roots, we shall show that the bound we obtain here is at least as big as that of [Hsi92]; whether or not they are equal is unclear at this point.

With the Hessian Comparison Theorem, we also prove that there is a lower bound for the mean curvature of any closed hypersurface of constant mean curvature in a manifold with a pole when its radial curvature is $\leq -c^2$ for some nonzero constant c.

¹⁹⁹¹ Mathematics Subject Classification. Primary 53A10; Secondary 53C35.

Key words and phrases: symmetric space, constant mean curvature, manifold with a pole.

Partially supported by Global Analysis Research Center, Seoul National University, Korea.