Tôhoku Math. J. 49 (1997), 577-584

JULIA SET OF THE FUNCTION $z \exp(z + \mu)$ II

TADASHI KURODA AND CHEOL MIN JANG

(Received May 20, 1996, revised July 17, 1996)

Abstract. We are concerned with bifurcation of Julia sets for the one-parameter family of functions in the title with the real parameter μ . In particular, the distribution of values of μ , for which the Julia sets of the functions coincide with the complex plane, is discussed.

Introduction. Let f_{μ} be an entire transcendental function $z \mapsto z \exp(z + \mu)$, where μ is a complex parameter. Put $f_{\mu}^{n} = f_{\mu} \circ f_{\mu}^{n-1}$ for a positive integer *n*, where f_{μ}^{0} means the identity mapping of the complex plane *C*. The Julia set J_{μ} of f_{μ} is defined as the set of all points on *C*, in any neighbourhood of every point of which the sequence $\{f_{\mu}^{n}\}_{n=0}^{\infty}$ does not form a normal family.

Baker [1] proved the following theorem.

THEOREM. There exists a real value of the parameter μ such that the Julia set J_{μ} of f_{μ} coincides with C.

Jang [3] proved the following result by studying Baker's argument in detail: There are infinitely many positive real values of μ with the property $J_{\mu} = C$.

In this article, we study the distribution of values of μ stated in the above result of Jang. Noting another result $J_{\mu} \neq C(-\infty < \mu < 2)$ of Jang [3], we restrict the parameter μ to the real value not less than 1.

1. Values μ_n and $\mu^{(n)}$ of the parameter μ . Obviously the set of singular values of $f: z \mapsto z \exp(z+\mu)$ consists of two values z=0 and $z=f_{\mu}(-1)$. The point z=0 is the only one finite transcendental singularity of the inverse function f_{μ}^{-1} of f_{μ} and this is fixed by f_{μ} . The point $z=f_{\mu}(-1)$ is the only one finite algebraic singularity of f_{μ}^{-1} .

For a fixed value μ of the parameter, we put

$$s_0(\mu) = -1$$
 and $s_n(\mu) = f_{\mu}(s_{n-1}(\mu))$, $n \ge 1$.

The sequence $\{s_n(\mu)\}_{n=1}^{\infty}$ is the so-called orbit of the critical value $z = f_{\mu}(-1)$ of f_{μ} under the iteration of f_{μ} . The behaviour of this orbit plays a very important role in the study of the bifurcation of Julia sets J_{μ} . So, first we state some properties of $s_n(\mu)$.

Since the parameter μ is real, every $s_n(\mu)$ is negative and we have

(1)
$$s_n(\mu) = s_k(\mu) \exp \psi_{k,n-k}(\mu), \quad 0 \le k \le n-1,$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 30D05.