ON SYMMETRIES OF CONSTANT MEAN CURVATURE SURFACES, PART I: GENERAL THEORY

Josef Dorfmeister* and Guido HaAK ${ }^{\dagger}$

(Received February 10, 1997, revised October 27, 1997)

Abstract

We start the investigation of immersions of a simply connected domain into three dimensional Euclidean space which have constant mean curvature (CMCimmersions), and allow for a group of automorphisms of the domain which leave the image invariant. This leads to a detailed description of symmetric CMC-surfaces and the associated symmetry groups.

1. Introduction. This is the first of two parts of a note in which we start the investigation of conformal CMC-immersions $\Psi: \mathscr{D} \rightarrow \boldsymbol{R}^{3}, \mathscr{D}$ an open, simply connected subset of C, which allow for groups of spatial symmetries

Aut $\Psi(\mathscr{D})=\left\{\tilde{T}\right.$ proper Euclidean motion of $\left.\boldsymbol{R}^{3} \mid \tilde{T} \Psi(\mathscr{D})=\Psi(\mathscr{D})\right\}$.
More precisely (see the definition in Section 2), we consider a Riemann surface M with universal covering $\pi: \mathscr{D} \rightarrow M$, and a conformal CMC-immersion $\Phi: M \rightarrow \boldsymbol{R}^{3}$ with nonzero mean curvature, such that $\Phi \circ \pi=\Psi$. Then we consider the groups

$$
\begin{gathered}
\text { Aut } \mathscr{D}=\{g: \mathscr{D} \rightarrow \mathscr{D} \text { biholomorphic }\}, \\
\text { Aut } M=\{g: M \rightarrow M \text { biholomorphic }\}, \\
\text { Aut }_{\pi} \mathscr{D}=\{g \in \text { Aut } \mathscr{D} \mid \text { there exists } \hat{g} \in \text { Aut } M: \pi \circ g=\hat{g} \circ \pi\}, \\
\operatorname{Aut}_{\mathscr{\Phi}} M=\{\hat{g} \in \text { Aut } M \mid \text { there exists } \tilde{T} \in \text { Aut } \Psi(\mathscr{D}): \Phi \circ \hat{g}=\tilde{T} \circ \Phi\},
\end{gathered}
$$

and

$$
\operatorname{Aut}_{\Psi} \mathscr{D}=\left\{g \in \text { Aut } \mathscr{D} \mid \text { there exists } \tilde{T} \in \text { Aut } \Psi(\mathscr{D}): \Psi \circ g=\tilde{T}_{\circ} \Psi\right\}
$$

There are many well-known examples of CMC-surfaces with large spatial symmetry groups. The classic Delaunay surfaces (see [2]) have a nondiscrete group Aut $\Psi(\mathscr{D})$ containing the group of all rotations around their generating axis. Other examples are the Smyth surface [9], which were visualized by D. Lerner, I. Sterling, C. Gunn and U. Pinkall. These surfaces have an $(m+2)$-fold rotational symmetry in \boldsymbol{R}^{3}, where the axis of rotation passes through the single umbilic of order m. More recent is the large class of examples provided by Große-Brauckmann and Polthier (see e.g. [4], [5]) of

[^0]
[^0]: * Partially supported by NSF Grant DMS-9205293 and Deutsche Forschungsgemeinschaft.
 ${ }^{\dagger}$ Supported by KITCS grant OSR-9255223 and Sonderforschungsbereich 288. 1991 Mathematics Subject Classification. Primary 53A10.

