THE RIGIDITY FOR REAL HYPERSURFACES IN A COMPLEX PROJECTIVE SPACE

RYOICHI TAKAGI, IN-BAE KIM AND BYUNG HAK KIM

(Received April 1, 1997, revised March 3, 1998)

Abstract. We prove a rigidity theorem for real hypersurfaces in a complex projective space of complex dimension $n \ge 4$. As an application of this rigidity theorem, we classify all intrinsically homogeneous real hypersurfaces in the complex projective space.

Introduction. Let $P_n(C)$ be an *n*-dimensional complex projective space. It is an open question whether a real hypersurface in $P_n(C)$ has rigidity or not. More precisely, if *M* is a (2n-1)-dimensional Riemannian manifold and *i*, *î* are two isometric immersions of *M* into $P_n(C)$, then are *i* and *î* congruent?

To this problem, many authors including the present ones gave some partial solutions (see [1], [3], [4] and [5]). Recall that an almost contact structure (ϕ, ξ, η) is naturally induced on a real hypersurface in $P_n(C)$ from the complex structure of $P_n(C)$, and ξ is called the *structure vector field*. The rank of the second fundamental tensor or the shape operator of a real hypersurface in $P_n(C)$ is said to be the *type number*. As one of the above-mentioned solutions, the following is known.

THEOREM A ([1]). Let M be a (2n-1)-dimensional connected Riemannian manifold, and i and \hat{i} be two isometric immersions of M into $P_n(\mathbb{C})$ $(n \ge 3)$. If the two structure vector fields coincide up to sign on M and the type number of (M, i) or (M, \hat{i}) is not equal to 2 at every point of M, then i and \hat{i} are rigid, that is, there exists an isometry φ of $P_n(\mathbb{C})$ such that $\varphi \circ i = \hat{i}$.

The purpose of this paper is to give a solution of the rigidity problem using Theorem A. Namely, first of all we shall prove:

THEOREM 1. Let M be a (2n-1)-dimensional Riemannian manifold, and i and \hat{i} be two isometric immersions of M into $P_n(C)$ $(n \ge 4)$. Then the two structure vector fields coincide up to sign on M.

The following is immediate from Theorems A and 1.

THEOREM 2. Let M be a (2n-1)-dimensional connected Riemannian manifold, and ι and ι be two isometric immersions of M into $P_n(\mathbb{C})$ $(n \ge 4)$. If the type number of (M, ι) or (M, ι) is not equal to 2 at every point of M, then ι and ι are rigid, that is, there exists

The second and third authors were supported by TGRC-KOSEF.

¹⁹⁹¹ Mathematics Subject Classification. Primary 53C40; Secondary 53C15.