L_p AND BESOV MAXIMAL ESTIMATES FOR SOLUTIONS TO THE SCHRÖDINGER EQUATION

SEIJI FUKUMA AND TOSINOBU MURAMATU

(Received October 31, 1997)

Abstract. Precise results on L_p and Besov estimates of the maximal function of the solutions to the Schrödinger equation are given. These results contain an improvement of the theorem in Sjölin [10].

1. **Introduction.** It is well-known that the solution to the Schrödinger equation

(1.1)
$$\frac{\partial u}{\partial t} = -i \Delta u, \quad u(0, x) = f(x), \quad (x \in \mathbf{R}^n, \ t \in \mathbf{R})$$

is given by

$$u(t,x) = c_n \iint e^{i(x-y)\xi + it|\xi|^2} f(y) d\xi dy.$$

In this note we shall consider estimates of L_2 -norm and the Besov type norm of integrals of this kind by means of the Besov norm of f, and give L_p -estimates of their maximal functions.

Our first results are the following two theorems:

THEOREM 1. Let σ be a positive number, $I=(0,1), \gamma>1$ and let $1\leq q\leq \infty$. Assume that $h(t,\xi)$ is real-valued, measurable, and C^{∞} in t and the inequality

(1.2)
$$\left| \frac{\partial^k h(t,\xi)}{\partial t^k} \right| \le C_k (1 + |\xi|^{k\gamma})$$

holds for any positive integer k, where C_k is a constant independent of t and ξ . Then, the operator T_1 defined by

(1.3)
$$T_1 f(t, x) = c_n \iint_{\mathbb{R}^n} e^{i(x-y)\xi + ih(t,\xi)} f(y) d\xi dy,$$

where $c_n = (2\pi)^{-n}$, is bounded from $B_{2,q}^{\gamma\sigma}(\mathbf{R}^n)$ to $B_{2,q}^{\sigma}(I; L_2(\mathbf{R}^2))$.

THEOREM 2. Let h be a real-valued function satisfying the condition (1.2). Then, the operator T_1 defined by (1.3) is bounded from $B_{2,1}^{\gamma/2}(\mathbf{R}^n)$ to $L_2(\mathbf{R}^n; L_{\infty}(I))$, i.e.,

(1.4)
$$\left(\int_{\mathbf{R}^n} \|T_1 f(x, \cdot)\|_{L_{\infty}(I)}^2 dx \right)^{1/2} \le C \|f\|_{B_{2,1}^{\gamma/2}}.$$

For the operator of the type (1.5) below acting on Sobolev spaces H^s , there are several papers. Carbery [1] and Cowling [2] have prove that T_2 is bounded from $H^s(\mathbf{R}^n)$ to $L_2(I; L_2(\mathbf{R}^n))$ for s > a/2, and Theorem 2 is an improvement of their results. P. Sjölin [10]

¹⁹⁹¹ Mathematics Subject Classification. Primary 42B25; Secondary 35Q55.

Key words and phrases. Maximal function, Besov norm, Schrödinger equation.