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Abstract. For a one-dimensional family of abelian varieties equipped with principal

theta divisors a canonical limit is constructed as a pair consisting of a reduced projective variety

and a Cartier divisor on it. Properties of such pairs are established.
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Introduction. Assume that we are given a 1-parameter family of principally polarized

abelian varieties with theta divisors. By this we will mean that we are in one of the following

situations:

1. ΊZ is a complete discrete valuation ring (DVR, for short) with the fraction field K,

S = Spec7£, η = SpecA^ is the generic point, and we have an abelian variety Gη over K

together with an effective ample divisor Θη defining a principal polarization; or

2. we have a projective family (G, Θ) over a small punctured disk D®.

In this paper we show that, possibly after a finite ramified base change, the family can be

completed in a simple and absolutely canonical manner to a projective family (F, Θ) with a

relatively ample Cartier divisor Θ over S, resp. Dε. Moreover, this construction is stable under

further finite base changes. We give a combinatorial description of this family and its central

fiber (PQ, ΘO) and study their basic properties. In particular, we prove that PQ is reduced and

Cohen-Macaulay and that H1(PQ, Θ(dΘo)), d > 0 are the same as for an ordinary PPAV

(principally polarized abelian variety).

Existence of such construction has profound consequences for the moduli theory. In-

deed, with it one must expect that there exists a canonical compactification Ag of the moduli

space Ag of PPAVs, similar to the Mumford-Deligne compactification of the moduli space of

curves. Without it, one has to believe that there is no single "best" geometrically meaningful
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