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ON MUMFORD’S CONSTRUCTION OF DEGENERATING
ABELIAN VARIETIES
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Abstract. For a one-dimensional family of abelian varieties equipped with principal
theta divisors a canonical limit is constructed as a pair consisting of a reduced projective variety
and a Cartier divisor on it. Properties of such pairs are established.
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Introduction. Assume that we are given a 1-parameter family of principally polarized
abelian varieties with theta divisors. By this we will mean that we are in one of the following
situations:

1. R is a complete discrete valuation ring (DVR, for short) with the fraction field K,
§ = SpecR, n = SpecK is the generic point, and we have an abelian variety G, over K
together with an effective ample divisor ®;, defining a principal polarization; or

2. we have a projective family (G, ®) over a small punctured disk Dg.

In this paper we show that, possibly after a finite ramified base change, the family can be
completed in a simple and absolutely canonical manner to a projective family (P, ®) with a
relatively ample Cartier divisor ® over S, resp. D.. Moreover, this construction is stable under
further finite base changes. We give a combinatorial description of this family and its central
fiber (Pp, ®p) and study their basic properties. In particular, we prove that Py is reduced and
Cohen-Macaulay and that H (Py, O(d®y)), d > 0 are the same as for an ordinary PPAV
(principally polarized abelian variety).

Existence of such construction has profound consequences for the moduli theory. In-
deed, with it one must expect that there exists a canonical compactification A g of the moduli
space Ay of PPAVs, similar to the Mumford-Deligne compactification of the moduli space of
curves. Without it, one has to believe that there is no single “best” geometrically meaningful
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