Kandasamy Muthuvel, Department of Mathematics, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin 54901, USA.

CERTAIN MEASURE ZERO, FIRST CATEGORY SETS

Ι

P. Komjáth [4] constructed a measure zero, first category set containing a translated copy of every countable set of reals. Assuming Martin's Axiom, he generalized this by showing that a similar set exists containing a translated copy of every set of size smaller than |R|. In this paper we obtain some results exploring such sets. For example, we show that if a set A contains a translated copy of every countable set, then its intersection with every nonempty open interval is of size |R|. The converse of this result is not true.

Theorem 1. Let A be a set of reals which contains a translated copy of every countable set of reals. If F is a measure zero or first category additive subgroup of the reals R, or if F is a set of size smaller than |R|, then $A \setminus F$ contains a translated copy of every countable set of reals.

Proof. Let N be a countable set of reals and let

 $X = \{x \in R : x + N \subseteq A\}, \text{ where } x + N = \{x + y : y \in N\}.$

Suppose $(x + N) \cap F \neq \emptyset$ for every $x \in X$. Then $X \subseteq F - N$ and X - X is contained in a countable union of translated copies of F or |X - X| < |R|. Let $y \in R$ and $y \notin X - X$. The hypothesis implies that $r + ((N+y) \cup N) \subseteq A$ for some $r \in R$. Since $r + y + N \subseteq A$ and $r + N \subseteq A$, by definition of X, $r + y \in X$ and $r \in X$. Hence $y \in X - X$, which contradicts the choice of y. Thus $(x+N) \cap F = \emptyset$ for some $x \in X$ and this completes the proof.

Corollary 1. If a set A contains a translated copy of every countable set, then its intersection with every nonempty open interval is of size |R|.

Proof. If $|A \cap I| < |R|$ for some nonempty open interval *I*, then by Theorem 1, $A \setminus (A \cap I)$ contains a translated copy of every countable set, and consequently