Variation of f on E and Lebesgue Outer Measure of $f E$

Let f be a real-valued function on a cell $K=[a, b]$. By "cell" we mean a closed, bounded, nondegenerate interval in \mathbf{R}. The total variation of f is given by a Kurzweil-Henstock integral $\int_{K}|d f| \leq \infty$ defined as the gauge-filtered limit of approximating sums over cell divisions with endpoint tags. For a development of this type of integral and its associated definition of differential, see [3,4,5]. We hope the reader will be impressed with the utility of our differential formulations based on an "honest" defintion of differential. We define the variation of f on a subset E of K to be the upper integral $\bar{\int}_{K} 1_{E}|d f| \leq \infty$ where 1_{E} is the indicator of E. We call $E d f$-null if this integral is zero, that is, if the differential $1_{E} d f=0[3,4]$. Before the advent of the Kurzweil-Henstock integral $d f$-null sets E were treated indirectly by using the condition that the image $f E$ be Lebesgue-null. Indeed, as we shall show in Theorem 2, $f E$ is Lebesgue-null if E is $d f$-null. This result enables us to avoid the usual tedious proofs that an image $f E$ is Lebesgue-null by resorting to a concise proof of the inherently stronger condition that E is $d f$-null. Theorem 11 gives a converse to Theorem 2 for f a continuous function of bounded variation. For such f a set E is $d f$-null if and only if $f E$ is Lebesgue-null. So for continuous f of bounded variation Lusin's condition (N) that f map Lebesguenull sets into Lebesgue-null sets is obviously just the absolute continuity conditon that every Lebesgue-null set is $d f$-null. Let m be Lebesgue measure and m^{*} be Lebesgue outer measure.

Theorem 1. Let E be a subset of K such that at each point of $E f$ is either left or right continuous. Then

$$
\begin{equation*}
m^{*}(f E) \leq 2 \bar{\int}_{K} 1_{E}|d f| \tag{1}
\end{equation*}
$$

Proof: Let D be the set of those t in E for which there exist cells J containing t with diam $f J=0$, that is, with f constant on J. Clearly $f D$ is countable, so $m(f D)=0$. Given a gauge δ on K and $\varepsilon>0$ each t in $E \backslash D$ is an endpoint of some cell J in K such that (J, t) is δ-fine and $0<\operatorname{diam} F J<\varepsilon$. Given $c>1$ choose s in J such that

