Inroads M. Bhaskara Rao, North Dakota State University, Fargo, ND 58105 K. Subramanyam, North Carolina State University, Wilmington, NC 28403

Measures With Prescribed Marginals, Extreme Points and Measure Preserving Transformations

Let $(X, \mathcal{A}, \lambda)$ and (Y, \mathcal{B}, ν) be two probability spaces. Let $M(\lambda, \nu)$ be the collection of all probability measures μ on the product σ -field $\mathcal{A} \times \mathcal{B}$ of $X \times Y$ such that the first and second marginals of μ are λ and ν , respectively, i.e., $\mu_1(A) = \mu(A \times Y) = \lambda(A)$ for every A in \mathcal{A} , and $\mu_2(B) = \mu(X \times B) = \nu(B)$ for every B in \mathcal{B} . The set $M(\lambda, \nu)$ is convex. The extreme points of this set have been characterized by Douglas (1964, Theorem 1, p.243) and Lindenstrauss (1965) when X = Y, $\mathcal{A} = \mathcal{B}$, $\lambda = \nu$ and the probability space has some additional structure. Let T be a measure preserving transformation from X to Y, i.e., T is a measurable transformation from X to Y, and $\lambda(T^{-1}B) = \nu(B)$ for every B in \mathcal{B} . We show that every such transformation gives an extreme point of $M(\lambda, \nu)$. The basic idea is to build a probability measure μ_T in $M(\lambda, \nu)$ sitting on the graph $G = \{(x, Tx); x \in X\}$ of T. But the graph G of T need not be available in the product σ -field $\mathcal{A} \times \mathcal{B}$. See Rao and Rao (1981, p.17) or Rao (1969). We overcome this difficulty by proceeding as follows and obtain a measure μ_T for which G is a thick set.

Let P_1 be the projection map from $X \times Y$ to X. We claim that the graph G has the property: for every E in $\mathcal{A} \times \mathcal{B}$, $P_1(E \cap G) \in \mathcal{A}$. For, let $\mathcal{E} = \{E \in \mathcal{A} \times \mathcal{B}; P_1(E \cap G) \in \mathcal{A}\}$. One can show that \mathcal{E} is closed under complementation and countable unions, and contains all measurable rectangle sets. Hence $\mathcal{E} = \mathcal{A} \times \mathcal{B}$. Define a set function μ_T on $\mathcal{A} \times \mathcal{B}$ by

$$\mu_T(E) = \lambda(P_1(E \cap G))$$
 for E in $\mathcal{A} \times \mathcal{B}$.

THEOREM. μ_T is an extreme point of $M(\lambda, \nu)$.

Proof. It is easy to check that μ_T is a probability measure on $\mathcal{A} \times \mathcal{B}$. We now check that μ_T has the prescribed marginals. Let $A \in \mathcal{A}$. Then $\mu_1(A) = \mu_T(A \times Y) = \lambda[P_1((A \times Y) \cap G))] = \lambda(A \cap T^{-1}Y) = \lambda(A)$. Let $B \in \mathcal{B}$. Then