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 Measures With Prescribed Marginals,
 Extreme Points and Measure

 Preserving Transformations
 Let ( X , .4, A) and (V, B, v) be two probability spaces. Let M( A, v) be the

 collection of all probability measures fi on the product <r-field A x B of X x
 Y such that the first and second marginals of ļi are A and u , respectively, i.e.,
 fii(A) = fx(A x Y) = A(j4) for every A in A , and fiļ (B) = ¡i(X x B) = v(B )
 for every B in B. The set M( A, v) is convex. The extreme points of this set
 have been characterized by Douglas (1964, Theorem 1, p.243) and Lindenstrauss
 (1965) when X = Y, A = B, A = u and the probability space has some additional
 structure. Let T be a measure preserving transformation from X to Y , i.e., T is a
 measurable transformation from X to Y , and A (T_1B) = v(B) for every B in B.
 We show that every such transformation gives an extreme point of M( A, i/). The
 basic idea is to build a probability measure /¿x in M( A, u) sitting on the graph
 G = {( x,Tx ); x G X} of T. But the graph G of T need not be available in the
 product <7-field Ax B. See Rao and Rao (1981, p.17) or Rao (1969). We overcome
 this difficulty by proceeding as follows and obtain a measure for which G is a
 thick set.

 Let P' be the projection map from X x Y to X. We claim that the graph
 G has the property: for every E in A x B, Pi(E fi G) 6 A. For, let S = {E G
 Ax B-, Pļ(EC'G) G A}. One can show that S is closed under complementation and
 countable unions, and contains all measurable rectangle sets. Hence S = A x B.
 Define a set function ļij on A x B by

 Pt(E) = '(Pi(E n G)) for E in Ax B.

 THEOREM, fi? is an extreme point of M( A, u).

 Proof. It is easy to check that is a probability measure on A x B. We
 now check that /ij has the prescribed marginals. Let A G A. Then H'{A) =
 Ht(A x Y) = '[Pi((A x Y) D G))] = A (A (1 T~XY) = A (A). Let B e B. Then
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