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Measures With Prescribed Marginals,

Extreme Points and Measure
Preserving Transformations

Let (X, A,)) and (Y,B,v) be two probability spaces. Let M(A,v) be the
collection of all probability measures g on the product o-field A x B of X x
Y such that the first and second marginals of u are A and v, respectively, i.e.,
p1(A) = (A xY) = A(A) for every A in A, and u2(B) = u(X x B) = v(B)
for every B in B. The set M()\,v) is convex. The extreme points of this set
have been characterized by Douglas (1964, Theorem 1, p.243) and Lindenstrauss
(1965) when X =Y, A = B, A = v and the probability space has some additional
structure. Let T' be a measure preserving transformation from X to Y, i.e., T is a
measurable transformation from X to Y, and A(T-'B) = v(B) for every B in B.
We show that every such transformation gives an extreme point of M(A,v). The
basic idea is to build a probability measure pur in M(),v) sitting on the graph
G = {(z,Tz); = € X} of T. But the graph G of T need not be available in the
product o-field A x B. See Rao and Rao (1981, p.17) or Rao (1969). .-We overcome
this difficulty by proceeding as follows and obtain a measure pur for which G is a
thick set.

Let P, be the projection map from X x Y to X. We claim that the graph
G has the property: for every E in A x B, P,(ENG) € A. For, let £ = {E €
AxB; Pi(ENG) € A}. One can show that £ is closed under complementation and
countable unions, and contains all measurable rectangle sets. Hence £ = A x B.
Define a set function u7 on A x B by

pr(E) = AMPi(ENG)) for E in AXxB.

THEOREM. ur is an extreme point of M (), v).

Proof. It is easy to check that ur is a probability measure on A x B. We
now check that ur has the prescribed marginals. Let A € A. Then y;(A) =
pr(AXY) = APA(AXY)NG))] = M(ANT-Y) = M(A). Let B € B. Then
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