Real Analysis Exchange Vol.16 (1990–91)

Zbigniew Grande, Institute of Mathematics, Copernicus University, ul. Chopina 12/13, 87-100 Toruń, Poland.

DERIVATIVES AND THE CARATHÉODORY SUPERPOSITION

Let **R** be the set of reals. The density topology T_d ([1], [8], [10]) on **R** consists of all measurable subsets A of **R** such that, for every $x \in A$, x is a density point of A. Let $I \subset \mathbf{R}$ be an interval. A function $f: I \to \mathbf{R}$ is density continuous ([5], [6], [7]) if it is continuous as a map from (I, T_d) into (R, T_d) .

A family \mathcal{F} of maps of the topological space (\mathbf{R}, T_d) into \mathbf{R} (with the natural topology) is said to be T_d -equicontinuous at a point $x \in \mathbf{R}$ ([9], p. 188), if, given $\varepsilon > 0$, there is a neighborhood $V \in T_d$ of x such that $|f(u) - f(x)| < \varepsilon$ for each $u \in V$ and $f \in \mathcal{F}$. We say that \mathcal{F} is T_d -equicontinuous on \mathbf{R} if it is T_d -equicontinuous at each point.

In the paper [2] I proved the following theorem:

<u>Theorem 0.</u> Suppose that $D \subset \mathbb{R}^2$ is a nonempty open set and $f: D \to \mathbb{R}$ is a locally bounded function such that all sections $f^y(t) = f(t,y)$ $(t,y \in \mathbb{R}$ and $(t,y) \in D$) are derivatives and all sections $f_x(t) = f(x,t)$ $(x,t \in R \text{ and } (x,t) \in D)$ are equicontinuous. Then for every continuous function $g: I \to \mathbb{R}$ such that $(x,g(x)) \in D$ for $x \in I$ and I is an interval, the function h(x) = f(x,g(x)) is a derivative.

In this paper we approach the derivative structure of the function h in terms of density continuity.

<u>Theorem 1.</u> Suppose that $D \subset \mathbb{R}^2$ is a nonempty open set and $f: D \to \mathbb{R}$ is a locally bounded function such that all sections f^y are derivatives and all sections f_x are T_d -equicontinuous. Then for every continuous and density continuous function $g: I \to \mathbb{R}$ such that I is an interval and $(x, g(x)) \in D$ for $x \in I$, the superposition h(x) = f(x, g(x)) is a derivative.

<u>**Proof.**</u> First, we remark that the function h is measurable in the Lebesgue sense ([4]). We shall prove that h is a derivative at each point $x \in I$, i.e.