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 DERIVATIVES AND THE

 CARATHÉODORY SUPERPOSITION

 Let R be the set of reals. The density topology T¿ ([1], [8], [10]) on R consists
 of all measurable subsets A of R such that, for every x G A, x is a density point
 of A. Let I C R be an interval. A function / : I - ► R is density continuous ([5],
 [6], [7]) if it is continuous as a map from (I,Td) into (R, Td).

 A family T of maps of the topological space (R, Td) into R (with the natural
 topology) is said to be Tj-equicontinuous at a point x G R ([9], p. 188), if, given
 e > 0, there is a neighborhood V G Td of x such that |/(u) - /(x)| < e for
 each u G V and / G T. We say that T is T^-equicontinuous on R if it is T¿-
 equicontinuous at each point.

 In the paper [2] I proved the following theorem:

 Theorem 0. Suppose that D C R2 is a nonempty open set and / : D - * R
 is a locally bounded function such that all sections fy(t) = f(t,y ) (í,¡/ 6 R and
 (í, y) G D) are derivatives and all sections fx(t) = f(x,t) (x,t G R and (x,ť) G D)
 are equicontinuous. Then for every continuous function g : I - * R such that
 (x,g(x)) G D for x € I and I is an interval, the function h(x) = f(x,g(x )) is a
 derivative.

 In this paper we approach the derivative structure of the function h in terms
 of density continuity.

 Theorem 1. Suppose that D C R2 is a nonempty open set and / : D - ► R is a
 locally bounded function such that all sections fy are derivatives and all sections fx
 are Tj-equicontinuous. Then for every continuous and density continuous function
 g : I R such that / is an interval and ( x,g(x )) G D for x G /, the superposition
 h(x) = f(x, g(x)) is a derivative.

 Proof. First, we remark that the function h is measurable in the Lebesgue
 sense ([4]). We shall prove that h is a derivative at each point x G I, i.e.
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