INFINITE-DIMENSIONAL GENERALISED RIEMANN INTEGRALS

In one dimension, we take intervals I of the form

$$]-\infty$$
, a[, [u, v[, [b, ∞ [

and define III as

respectively. The pair (I, x) are associated if x is

respectively. A gauge is a positive function $\delta(x)$ defined for $x \in \mathbb{R}^* = \mathbb{R} \cup \{-\infty, \infty\}$. If I, x are associated then (I, x) or, simply, I, is δ -fine if |I|

$$<-1/\delta(x), <\delta(x), >1/\delta(x)$$

respectively.

In n dimensions, an interval I is $I_1 \times \ldots \times I_n$, where each I_i is an interval of R.

III is the product of the $|I_j|$. If $x = (x_1, ..., x_n)$, $x_j \in R^*$, then (I, x) is an associated couple if (I_j, x_j) are associated in R, $1 \le j \le n$. Given $\delta(x) > 0$, I and (I, x) are δ -fine if I_j is δ -fine, $1 \le j \le n$. A partition of R^n is a finite collection of disjoint intervals I whose union is R^n . A division of R^n is a finite collection of associated (I, x) such that the intervals I form a partition of R^n . A division of R^n is δ -fine if each $(I, x) \in \mathcal{E}$ is δ -fine.

Given a point function h(x), the Riemann sum is denoted by

$$(\mathfrak{E})\Sigma h(x)|I|$$

or simply $\Sigma h(x)$ III, where we take h(x) equal to zero by definition if x is at infinity.

Similarly, if h(I, x) is a function of associated (I, x), the Riemann sum is $\Sigma h(I, x)$, making a similar provision whenever x has an infinite component.

For the infinite dimensional case, let] τ ', τ [be an interval of R, and let T = R] τ ', τ [. Thus T is the set

$${x: t \rightarrow x(t), t \in]\tau', \tau[, x(t) \in R}.$$

T* is T with points at infinity adjoined, i.e. replace R by R* in previous definition. Let $N = \{t_1, ..., t_n\}, x_i = x(t_i)$ for $1 \le j \le n, x(N) = (x_1, ..., x_n)$,

$$I = I[N] = \{x : x(t_j) \in I_j, \ 1 \le j \le n\}, \ I(N) = I_1 \times \dots \times I_n, \ |I| = |I[N]| = |I_1| \dots .|I_n|.$$

(I[N], x) are associated in T if (I(N), x(N)) are associated in \mathbb{R}^n . The definitions of partition and division of T follow those given for \mathbb{R}^n .