Janusz Woś, Institute of Mathematics, Technical University, Wybrzeze Wyspiańskiego 27, 50-370 Wrocław, Poland

ON APPROXIMATE DIFFERENTIABILITY AND BILATERAL KNOT POINTS

It is well known that for a measurable function f defined on the interval [0,1] we have $D_f = ADf = D^+f$ a.e. in $\{D^+f < +\infty\}$. (See [1], Theorem 2.) At the same time there are trivial examples of measurable functions f for which the approximate derivative ADf exists a.e., but almost every point $x \in [0,1]$ is a bilateral knot point, i.e. $D^+f(x) = D^-f(x) = +\infty$ and $D_+f(x) = D_-f(x) = -\infty$. In this note, answering a problem of K. M. Garg ([2], 10.3 Problem), we construct a continuous function with these properties.

Let us consider three sequences $\{c_n\}$, $\{d_n\}$, and $\{r_n\}$ of positive real numbers such that $\{d_n\}$ is decreasing, $c_n < d_n/2$, and

(1)
$$\lim_{n\to\infty} r_n d_n^{-1} = \infty$$
,

(2) $\sum_{n=1}^{\infty} c_n d_n^{-1} < \infty$,

(3)
$$\sum_{n=1}^{N-1} r_n c_n^{-1} \leq r_N/4d_N$$
 for each $N \geq 2$,

(4)
$$\sum_{n=N+1}^{\infty} r_n \leq r_N/4$$
 for each $N \geq 1$.

In order to provide some examples of such sequences let us take a sequence $\{u_n\}$ of numbers from the interval (0,1/2) satisfying $\sum_{n=1}^{\infty} u_n < \infty$, and let $\{w_n\}$ be an arbitrary sequence of positive real numbers which decreases to zero and satisfies the inequality $\sum_{n=1}^{N-1} (u_n w_n)^{-1} \leq (4w_N)^{-1}$ for every $N \ge 2$. Next, for arbitrary fixed number $p \ge 5$, put

$$r_n = p^{-n}$$
, $d_n = w_n r_n$, $c_n = u_n d_n$ $(n \ge 1)$.