Real Analysis Exchange Vol. 19(2), 1993/94, pp. 660-662

Michael Schramm, Department of Mathematics, LeMoyne College, Syracuse, New York 13214, e-mail: schramm@maple.lemoyne.edu

ON HBV AND THE GARSIA–SAWYER CLASS

We consider continuous functions with domain [a, b] and range [c, d]. Such a function f is said to be in the Garsia-Sawyer Class (GS) if $\int_{c}^{d} \log^{+}(n_{f}(y)) dy$ is finite, where $n_{f}(y)$ is the Banach indicatrix of f. Garsia and Sawyer [2] showed that functions in GS have uniformly convergent Fourier series. Let $\Phi = \{\varphi_n\}$ be a sequence of convex functions with the following properties:

- i) $\varphi_n: [0,\infty) \to [0,\infty)$ for $n = 1, 2, \ldots;$
- ii) $\varphi_n(0) = 0$ and $\varphi_n(x) > 0$ for x > 0, n = 1, 2, ...;
- iii) $\varphi_{n+1}(x) \leq \varphi_n(x)$ for $x \geq 0, n = 1, 2, \ldots$;
- iv) $\sum_{n=1}^{\infty} \varphi_n(x) = \infty$ for x > 0.

We have said [3] that f is of Φ -Bounded Variation (Φ BV) if there is a positive constant c so that $\sum \varphi_n (c | f(b_n) - f(a_n) |)$ is finite for any collection $\{[a_n, b_n]\}$ of non-overlapping subintervals of [a, b] (and this is equivalent to requiring such sums to be uniformly bounded). By making appropriate choices of the functions φ_n , we may obtain many of the spaces of generalized bounded variation that have been studied. In particular, if $\varphi_n(x) = x/n$, we have the functions of Harmonic Bounded Variation (HBV), introduced by Waterman [4] (in this case we may take c = 1 above). Waterman showed that continuous functions in HBV have uniformly convergent Fourier series, and moreover [5] that GS \subseteq HBV. HBV is pivotal in this context, since if Φ BV properly contains HBV, there is a continuous function in Φ BV whose Fourier series diverges at a point. But GS is not closed under addition, so GS is not the same as HBV (an illustration of this fact may be found in [1]). The full story of the relationship between GS and HBV is not yet known. Here we establish a result relating to the way GS is distributed through HBV.

Key Words: Garsia-Sawyer, bounded variation, harmonic bounded variation Mathematical Reviews subject classification: Primary 26A45 Received by the editors February 16,1994