Real Analysis Exchange Vol 15 (1989-90)

Michał Morayne and Sławomir Solecki, Mathematical Institute, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, POLAND.

MARTINGALE PROOF OF THE EXISTENCE OF LEBESGUE POINTS

The usual proof of the existence of Lebesgue points of a summable function is via Vitali's covering theorem or its modifications. We give here an alternative proof which reduces geometric considerations to a very simple lemma. Our proof is based on Lévy's martingale convergence theorem.

Let *A* be a family of sets and let X be any set. Then $A \mid X = \{A \cap X : A \in A\}$. By σA we denote the σ -field generated by A. Let Z be the set of all integers. The symbol χ_{Λ} wi11 stand for the characteristic function of a set Α. The n-dimensional Lebesgue measure in \mathbb{R}^n will be denoted by λ (the same symbol λ will be used for each positive integer n). For any measure space $(\Omega, \mathcal{F}, \mu)$ we shall denote by $L_{\mu}(\Omega)$ the family of real functions f measurable with respect to F such that $f_{\Omega}|f| d\mu < \infty$. If Ω is an open subset of \mathbb{R}^{n} , \mathcal{F} will be the family of Lebesgue measurable sets and $\mu = \lambda$. For a subset X of \mathbb{R}^n and a vector $x \in \mathbb{R}^n$ put $x + X = \{x + y : y \in X\}$.

Let $f \in L_1(U)$, where U is an open subset of \mathbb{R}^n . We say that $x \in U$ is a *Lebesgue point* of f if