Russell A. Gordon, Department of Mathematics, Whitman College, Walla Walla, WA 99362

A DESCRIPTIVE CHARACTERIZATION OF THE GENERALIZED RIEMANN INTEGRAL

A function f is Denjoy-Perron integrable on [a, b] if and only if there exists an ACG_* function F on [a, b] such that F' = f almost everywhere on [a, b]. In this paper we present a similar result (Theorem 4) for the generalized Riemann integral using a different notion of absolute continuity. See also the paper by C. Seng in this volume.

We will assume familiarity with the definitions of the Denjoy-Perron and generalized Riemann integrals. Throughout this paper \mathcal{P} will denote a finite collection of non-overlapping tagged intervals in [a, b]. For $\mathcal{P} = \{(t_i, [c_i, d_i]) : 1 \le i \le N\}$, we will write

$$f(\mathcal{P}) = \sum_{i=1}^{N} f(t_i)(d_i - c_i), \quad F(\mathcal{P}) = \sum_{i=1}^{N} (F(d_i) - F(c_i)), \quad \text{and} \quad \mu(\mathcal{P}) = \sum_{i=1}^{N} (d_i - c_i)$$

This is an abuse of notation, but it is quite convenient. Let δ be a positive function defined on [a, b]. We say that \mathcal{P} is subordinate to δ if $[c_i, d_i] \subset (t_i - \delta(t_i), t_i + \delta(t_i))$ for each *i* and that \mathcal{P} is subordinate to δ on [a, b] if in addition \mathcal{P} is a partition of [a, b]. Given a set E and a point t, let $\rho(t, E)$ be the distance from t to E, CE be the complement of E, and \overline{E} be the closure of E.

DEFINITION 1: Let $F : [a,b] \to R$ and let $E \subset [a,b]$. The function F is AC_{δ} on E if for each $\epsilon > 0$ there exist a positive number η and a positive function δ on E such that $|F(\mathcal{P})| < \epsilon$ whenever \mathcal{P} is subordinate to δ , all of the tags of \mathcal{P} are in E, and $\mu(\mathcal{P}) < \eta$. The function F is ACG_{δ} on E if E can be written as a countable union of sets on each of which the function F is AC_{δ} .

LEMMA 2: Suppose that $F : [a, b] \to R$ is ACG_{δ} on [a, b] and let $E \subset [a, b]$. If $\mu(E) = 0$, then for each $\epsilon > 0$ there exists a positive function δ on E such that $|F(\mathcal{P})| < \epsilon$ whenever \mathcal{P} is subordinate to δ and all of the tags of \mathcal{P} are in E.

PROOF: Let $E = \bigcup_n E_n$ where the E_n 's are disjoint and F is AC_{δ} on each E_n . Let $\epsilon > 0$. For each n there exist a positive function δ_n on E_n and a positive number η_n such that $|F(\mathcal{P})| < \epsilon/2^n$ whenever \mathcal{P} is subordinate to δ_n , all of the tags of \mathcal{P} are in E_n , and $\mu(\mathcal{P}) < \eta_n$. For each n choose an open set O_n such that $E_n \subset O_n$ and $\mu(O_n) < \eta_n$. Let $\delta(t) = \min\{\delta_n(t), \rho(t, CO_n)\}$ for $t \in E_n$. Suppose that \mathcal{P} is subordinate to δ and that all of the tags of \mathcal{P} are in E. Let \mathcal{P}_n be the subset of \mathcal{P} that has tags in E_n . Note that $\mu(\mathcal{P}_n) < \eta_n$ and compute

$$|F(\mathcal{P})| \leq \sum_{n} |F(\mathcal{P}_{n})| < \sum_{n} \epsilon/2^{n} < \epsilon.$$

This completes the proof.