Real Analysis Exchange Vol 15 (1989-90)

James Foran, Department of Mathematics University of Missouri-Kansas City, Kansas City, MO 64110

THE RADON-NIKODYM DERIVATIVE IN EUCLIDEAN SPACES

The usual Radon-Nikodym Theorem can be stated as follows: If Φ is a signed measure and m is a measure on a σ -algebra $\mathcal A$ of subsets of a set X where both Φ and m are σ -finite, then there is an m-measurable function f and a singular completely additive function of a set θ such that for each $E \in \mathcal A$, $\Phi(E) = \int_E f \ dm + \theta(E)$. Here θ is singular means that there is a set $Z \in \mathcal A$ with m(Z) = 0 such that for $B \in \mathcal A$ with $B \cap Z = \emptyset$, $\theta(B) = 0$. The function f is sometimes called the Radon-Nikodym derivative of Φ with respect to m and written $d\Phi/dm$.

In Euclidean spaces, if a function Φ is defined on the Borel sets, the general upper derivate is defined by $\overline{D}\Phi(x)=\sup \lim \Phi(E_n)/m(E_n)$ where the supremum is taken over all regular sequences $\{E_n\}$ of closed sets with $x\not\in \bigcap E_n$ and $\lim \dim E_n=0$ for which $\lim \Phi(E_n)/m(E_n)$ exists. A sequence $\{E_n\}$ is regular provided there is r>0 such that for each n $m(E_n)/m(Q_n)>r$ where Q_n is the smallest cube containing E_n . The general lower derivate $\underline{D}\Phi$ is defined by the infimum of such limits and the general derivative $D\Phi(x)$ is the common value of $\overline{D}\Phi(x)$ and $\underline{D}\Phi(x)$ when they are equal.