Real Analysis Exchange Vol 15(1989-90)

T. E. Armstrong¹, Department of Mathematics & Statistics, University of Maryland-Baltimore County, Catonsville, Maryland 21228.

A CHARACTERIZATION OF NON-ATOMIC PROBABILITIES ON [0,1] WITH NOWHERE DENSE SUPPORTS

For a countably additive Borel probability measure μ on [0,1], let $\{T_i(\mu) : i \in N\}$ be an enumeration of the connected components of $[0,1] \setminus \text{supp}(\mu)$. These are the intervals of constancy of the cumulative distribution function F_{μ} . For all i let $y_i(\mu)$ be the value of F_{μ} on $T_i(\mu)$.

Proposition 1 μ is non-atomic with $supp(\mu)$ nowhere dense iff $\{y_i(\mu) : i \in N\}$ is dense in [0, 1].

Proof: Suppose that μ is non-atomic with nowhere dense support. Since μ is nonatomic F_{μ} is continuous and $\{F_{\mu}(x) : x \in \text{supp}(\mu)\} = [0,1]$. If $0 \leq y_1 < y_2 \leq 1$ are $F_{\mu}(x_1)$ and $F_{\mu}(x_2)$ with $x_1 < x_2$ in $\text{supp}(\mu)$ there is an interval $T_i(\mu)$ between x_1 and x_2 since $\text{supp}(\mu)$ is nowhere dense. Thus $y_1 < y_i(\mu) < y_2$. This establishes density of $\{y_i(\mu) : i \in N\}$ in [0, 1].

Assume density of $\{y_i(\mu) : i \in N\}$. μ must be non-atomic for otherwise there would be an $x \in [0,1]$ so that $F_{\mu}(x^-) = \lim_{z \uparrow x} F_{\mu}(z) < F_{\mu}(x)$. In this case no $y_i(\mu)$ would be in $(F_{\mu}(x^-), F_{\mu}(x))$ contradicting density. $\operatorname{supp}(\mu)$ must be nowhere dense for if $\phi \neq (x_1, x_2) \subset \operatorname{supp}(\mu)$ then $F_{\mu}(x_1) < F_{\mu}(x_2)$ so $y_i(\mu) \in (F_{\mu}(x_1), F_{\mu}(x_2))$ for some $i \in N$ hence $T_i(\mu)$ is in (x_1, x_2) which is impossible since $T_i(u) \cap \operatorname{supp}(u) = \phi$. Thus $\operatorname{supp}(\mu)$ is nowhere dense.

The intervals $\{T_i(\mu) : i \in N\}$ are non-overlapping and are ordered by $T_i(\mu) < T_j(\mu)$ iff $x_i \in T_i(\mu)$ and x_j in $T_j(\mu)$ implies $x_i < x_j$. The mapping $y_i \to T_i(\mu)$ is an order isomorphism. $\{y_i(\mu) : i \in N\}$ has maximum 1 (minimum 0) iff $\{T_i(\mu) : i \in N\}$ has a maximum containing 1 (minimum containing 0) iff $1 \notin \operatorname{supp}(\mu)$ ($0 \notin \operatorname{supp}(\mu)$). Allowing for different possible order types the converse is true. If K is a perfect nowhere dense subset of [0,1] and the countable dense subset $\{y_i : i \in N\}$ of [0,1] has extrema of the same type as the components $\{T_i : i \in N\}$ of $[0,1]\setminus K$ there is an order isomorphism $T_i \leftrightarrow y_i$ (see Theorem 1 page 160 of Fraenkel [1961]). For such an isomorphism define $F(x) = y_i$ if $x \in T_i$ to obtain a non-decreasing function from $[0,1]\setminus N \to [0,1]$ which has a right continuous extension (which is continuous

¹Supported by NSF grant DMS 8803556