Ralph Henstock, Department of Mathematics, University of Ulster, Coleraine, County Londonderry, Northern Ireland BT52 1SA.

LIMITS UNDER THE INTEGRAL SIGN¹

Using a decomposable division space, we study

(1)
$$\lim_{n \to \infty} \int_{E} f_n dm = \int_{E} \lim_{n \to \infty} f_n dm ,$$

where the f_n are functions of points with values in a space K, and m is a function of interval-point pairs with values in K or real or complex scalars, so that the values of f_n and m can be multiplied together. When K is linear with real scalars a and a norm $||\mathbf{k}||$ satisfying $||\mathbf{ak}|| = |\mathbf{a}| \cdot ||\mathbf{k}||$, it is usual to have properties (i) $V(\mathbf{m};\mathbf{A};\mathbf{E}) < \infty$, (ii) $||f_n - f|| \to 0$ m-almost everywhere in E, (iii) Fm and F_n (n = 1,2, ...) integrable on E, and (iv) $m \ge 0$ and $||f_n|| \le F$ (n = 1,2, ...). These are a type of Arzela-Lebesgue condition in K. But (i) and (iv) restrict the test; (i) cuts out many applications to Feynman integration. Again, not all topological groups have even a group norm, while the restriction to $f_n(t)m(I,t)$ is a weakness. Generalizing to $h_n(I,t)$, we have a problem highlighted by the following examples.

On the real line, for each fixed integer $j \ge 2$ let $h_j([u,v),t) = v-u$ if $(j+1)u/j < v \le ju/(j-1)$ (u > 0), and otherwise let $h_j = 0$. Then $h = \sum_{j=2}^{\infty} h_j = v-u$ $(u < v \le 2u)$ and otherwise h = 0, and the guage integrals $\int_{[0,1)} dh_j = 0$ (all $j \ge 2$), $\int_{[0,1)} dh = 1$, and $\sum_{j=2}^{\infty} h_{2j}$ is not integrable over any interval of [0,1).

¹This paper was written during the tenure of a Leverhulme Trust Emeritus Fellowship.