James Foran, University of Missouri-Kansas Kansas City, MO 64110

Approximating Hausdorff Measures

This talk involved a few topics and questions in which Hausdorff measures and dimensions play a role. First, it appears to be still an open question as to whether these are $F\sigma$ subfields (or subrings) of the real numbers of dimensions larger than 0. Subgroups of any dimension s with $0 \le s \le 1$ and smeasures 0, in the case $0 \le s \le 1$, or s-measures ∞ , in the case $0 \le s \le 1$, were constructed, for example in [1] using restrictions on the decimal expansions of numbers. In [2] it was shown that closed sets F of dimension s exist which satisfy for each x, $y \in F$, $\frac{1}{2}(x + y) \notin F$. Other algebrais combinations involving Hausdorff measure remain to be considered.

Secondly, the question of non-measurability of sets in Hausdorff m_0^S measures was discussed. It seems clear from examples that every closed set of n-dimensional measure 0 in \mathbf{R}^n is not m_0^S measurable for s < n and $\delta > 0$ unless its m_0^S measure is 0. Proofs of this might involve further insight into the structure of sets of fractional measure.

Thirdly, some observations concerning the Cantor singular function (namely, that it satisfies a Lipschitz condition of order

33