LEONARD Y. H. YAP, DEPARTMENT OF MATHEMATICS, NATIONAL UNIVERSITY OF SINGAPORE, SINGAPORE 0511, REPUBLIC OF SINGAPORE

ON A CERTAIN CONVERSE OF HÖLDER'S INEQUALITY FOR LORENTZ SPACES

In this talk I shall discuss some results obtained jointly with T. S. Quek. Our work is motivated by our interest in the Fourier-Stieltjes transforms of measures μ in M(G), the measure algebra defined on a locally compact Abelian group G. Since every non-discrete locally compact Abelian group G that is not σ -compact contains a locally null non-null subset, it is not sufficient, for our purposes, to consider only σ -finite measure spaces (X,4, μ) in our formulation of the converse of Hölder's inequality for Lorentz spaces.

We recall the following definitions.

<u>Definition 1</u>. Let (X, A, μ) be a measure space. A set $A \in A$ is said to be a *locally null* set if $A \cap F$ is a null set (i.e., $\mu(A \cap F) = 0$) for every measurable set F with $\mu(F) < \infty$.

<u>Definition 2</u>. Let f be a measurable function defined on a measure space (X, \mathfrak{a}, μ) . For $y \ge 0$, we define

$$\mu(f,y) = \mu\{x \in X : |f(x)| > y\}.$$

30