Real Analysis Exchange Vol 14 (1988-89)

Mariusz Strześniewski, Institute of Mathematics, UG, Wita Stwosza, 57, 87-952 Gdańsk, Poland.

A NOTE ON ASYLMETRY SETS

In this note we give a difference between measure and category in terms of asymmetry sets. A category analogue of an approximate asymmetry set is \mathcal{C} -well porous, see [6]. Here, we construct a function f for which the approximate asymmetry set is not \mathcal{C} -well porous. In other words, the thesis that every approximate asymmetry set is \mathcal{C} -porous cannot be strengthened to a thesis that every such set is \mathcal{C} -well porous.

Let f be a function from R into R. The asymmetry set of f is denoted by A(f) and defined to be the set of all points $x \in R$ for which $W_{-}(f,x) \neq W_{+}(f,x)$ where $W_{-}(f,x)$, $W_{+}(f,x)$ denote one sided approximate cluster sets of f at a point x. More precisely, $W_{+}(f,x)$ is the set of all $y \in R \cup \{-\infty, +\infty\}$ satisfying the following condition, for every neighbourhood U of y, x is not a dispersion point of $f^{-1}(U)$ from the right in the sense of measure. In an analogous way is defined the set $W_{-}(f,x)$. As in [2] we define the category analogues of one sided dispersion as follows. Let I denote the \tilde{G} -ideal of all meager sets in R. Let $B \subseteq R$ be a Baire set.

469