Pertti Mattila, University of Helsinki, Hallituskatu 15, 00100 Helsinki, Finland

THE HAUSDORFF DIMENSION OF VERY STRONGLY POROUS SETS IN Rⁿ

For $E \subset \mathbb{R}^n$, $n \ge 2$, $x \in E$, and $0 < r < \infty$, denote

 $p(E,x,r) = \sup\{s: B(y,s) \subset B(x,r) \setminus E \text{ for some } y\}.$

Here B(x,r) is the closed ball with centre x and radius r. It is easy to see by simple covering arguments that if 0 and

 $\liminf_{r\neq 0} 2p(E,x,r)/r \ge p \text{ for } x \in E,$

then the Hausdorff dimension dim $E \leq d(p)$, where d(p), $n-1 \leq d(p) < n$, is a constant depending only on n and p. But finding the best possible d(p) seems to be a rather difficult problem. However it is possible to choose d(p) in the following asymptotically precise way as p tends to 1:

THEOREM 1. $\lim_{p \neq 1} d(p) = n-1$. In particular, if $\lim_{p \neq 0} 2p(E,x,r)/r = 1$ for $x \in E$, then dim $E \leq n-1$.

This result is an easy corollary to the following density theorem for the s-dimensional Hausdorff measure H^S proved in [M]:

THEOREM 2. Let n-l < s < n. For any b > 0 there is c(b) > 0, depending also on n and s, with the following property: Suppose E is an H^S measurable subset of R^n with $0 < H^S(E) < \infty$. Then for H^S almost all x in E there are arbitrarily small radii r such that

 $H^{S}(E \cap B(x,r) \cap \{x + y: y/|y| \in S\}) > c(b)r^{S}$

for any Borel set $S \subset \{y: |y| = 1\}$ with $H^{n-1}(S) \ge b$.

Recently Arto Salli has given a different more direct proof for Theorem 1, which also applies to the Minkowski dimension.

Reference:

[M] P. Mattila, Distribution of sets and measures along planes, to appear in J. London Math. Soc.