Real Analysis Exchange Vol. 11 (1985-85)

Lee Peng Yee and Chew Tuan Seng Department of Mathematics National University of Singapore Kent Ridge Singapore 0511 Republic of Singapore

A RIESZ-TYPE DEFINITION OF THE DENJOY INTEGRAL

Riesz [4] defines a Lebesgue integrable function as the almost everywhere limit of a mean convergent sequence of step functions. A short proof of the uniqueness of the definition can be found in [2]. In this note we give a similar definition for the Denjoy integral and show that using this definition a convergence theorem can be proved.

First, we give some definitions [6]. Let X be a closed set in [a,b]. A function F is said to be absolutely continuous in the restricted sense on X or $AC_*(X)$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that whenever

$$\sum_{i} |b_{i} - a_{i}| < \delta$$

where $[a_i, b_i]$, i = 1,2,..., is a finite or infinite sequence of nonoverlapping intervals in [a,b] and a_i , $b_i \in X$ for all i, we have

$$\sum_{i} \omega(F; [a_i, b_i]) < \varepsilon$$

where ω denotes the oscillation of F over $[a_i, b_i]$. Then F is ACG_{*} if [a,b] is the union of closed sets X_i , i = 1,2,..., such that F is AC_{*}(X_i) for each i. A function f is *Denjoy integrable* on [a,b] if there exists a continuous and ACG_{*} function F such that the derivative F'(x) = f(x) almost everywhere in [a,b].